
1/19/2020 Linux x86 Program Start Up

dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html 1/12

Linux x86 Program Start Up

or - How the heck do we get to main()?

by Patrick Horgan

(Back to debugging.)
Click to show Table of Contents

Who's this for?

This is for people who want to understand how programs get loaded under linux. In particular it talks about
dynamically loaded x86 ELF files. The information you learn will let you understand how to debug problems that
occur in your program before main starts up. Everything I tell you is true, but some things will be glossed over
since they don't take us toward our goal. Further, if you link statically, some of the details will be different. I won't
cover that at all. By the time you're done with this though, you'll know enough to figure that out for yourself if you
need to.

This is what we'll cover (pretty picture brought to you by dot - filter for drawing directed graphs)

When we're done, you'll understand this.

How did we get to main?

We're going to build the simplest C program possible, an empty main, and then we're going to look at the
disassembly of it to see how we get to main. We'll see that the first thing that's run is a function linked to every
program named _start which eventually leads to your program's main being run.

int
main()
{
}

Save a copy of this as prog1.c if you want, and follow along. The first thing I'll do is to build it like this.

HOME TUTORIALS PHOTOGRAPHY DEBUGGING STUFFdbp
Saving to Security

Linux x86 Program Start Up

http://dbp-consulting.com/tutorials/debugging/index.html
http://dbp-consulting.com/
http://dbp-consulting.com/tutorials
http://dbp-consulting.com/Photography
http://dbp-consulting.com/tutorials/debugging
http://dbp-consulting.com/stuff

1/19/2020 Linux x86 Program Start Up

dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html 2/12

080482e0 <_start>:
80482e0: 31 ed xor %ebp,%ebp
80482e2: 5e pop %esi
80482e3: 89 e1 mov %esp,%ecx
80482e5: 83 e4 f0 and $0xfffffff0,%esp
80482e8: 50 push %eax
80482e9: 54 push %esp
80482ea: 52 push %edx
80482eb: 68 00 84 04 08 push $0x8048400
80482f0: 68 a0 83 04 08 push $0x80483a0
80482f5: 51 push %ecx
80482f6: 56 push %esi
80482f7: 68 94 83 04 08 push $0x8048394
80482fc: e8 c3 ff ff ff call 80482c4 <__libc_start_main@plt>
8048301: f4 hlt

gcc -ggdb -o prog1 prog1.c

Before we try to debug a later version of this (prog2), in gdb, we're going to look at the disassembly of it and learn
a few things about how our program starts up. I'm going to show the output of objdump -d prog1, but I'm not
going to show it in the order it would be dumped by objdump, but rather in the order it would be executed. (But
you're perfectly welcome to dump it yourself. Something like objdump -d prog1 >prog1.dump will save a copy
for you, and then you can use your favorite editor to look at it.) (But RPUVI - Real Programmers Use VI;) N.B.
This quip originally said Real Men, because that was the humorous usage that was prevelant when I was a
young programmer. Someone (thanks aroman) objected, and after thinking about it, I agreed. The current reader
has no idea of the context in my head, and I am always trying to get people to see that we need a lot more
women in STEM and that part of the problem is that there is a prevalent unconscious gender bias in STEM that
makes it unwelcoming for women. (As mine was unconscious here.) Now we return you to the regularly
scheduled tutorial.

But first, how do we get to _start?

When you run a program, the shell or gui calls execve() which executes the linux system call execve(). If you
want more information about execve() then you can simply type man execve from your shell. It will come from
section 2 of man where all the system calls are. To summarize, it will set up a stack for you, and push onto it
argc, argv, and envp. The file descriptions 0, 1, and 2, (stdin, stdout, stderr), are left to whatever the shell set
them to. The loader does much work for you setting up your relocations, and as we'll see much later, calling your
preinitializers. When everything is ready, control is handed to your program by calling _start() Here from
objdump -d prog1 is the section with _start.

_start is, oddly enough, where we start

xor of anything with itself sets it to zero. so the xor %ebp,%ebp sets %ebp to zero. This is suggested by the
ABI (Application Binary Interface specification), to mark the outermost frame. Next we pop off the top of the stack.
On entry we have argc, argv and envp on the stack, so the pop makes argc go into %esi. We're just going to
save it and push it back on the stack in a minute. Since we popped off argc, %esp is now pointing at argv. The
mov puts argv into %ecx without moving the stack pointer. Then we and the stack pointer with a mask that clears
off the bottom four bits. Depending on where the stack pointer was it will move it lower, by 0 to 15 bytes. In any
case it will make it aligned on an even multiple of 16 bytes. This alignment is done so that all of the stack
variables are likely to be nicely aligned for memory and cache efficiency, in particular, this is required for SSE
(Streaming SIMD Extensions), instructions that can work on vectors of single precision floating point
simultaneously. In a particular run, the %esp was 0xbffff770 on entry to _start. After we popped argc off the
stack, %esp was 0xbffff774. It moved up to a higher address (putting things on the stack moves down in
memory, taking things off moves up in memory). After the and the stack pointer is back at 0xbffff770.

Now set up for calling __libc_start_main

So now we start pushing arguments for __libc_start_main onto the stack. The first one, %eax is garbage
pushed onto the stack just because 7 things are going to be pushed on the stack and they needed an 8th one to
keep the 16-byte alignment. It's never used for anything. __libc_start_main is linked in from glibc. In the
source tree for glibc, it lives in csu/libc-start.c. __libc_start_main is specified like

int __libc_start_main(int (*main) (int, char * *, char * *),
 int argc, char * * ubp_av,

Saving to Security

Linux x86 Program Start Up

1/19/2020 Linux x86 Program Start Up

dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html 3/12

void __libc_init_first(int argc, char *arg0, ...)
{
 char **argv = &arg0, **envp = &argv[argc + 1];
 __environ = envp;
 __libc_init (argc, argv, envp);
}

$ LD_SHOW_AUXV=1 ./prog1
AT_SYSINFO: 0xe62414
AT_SYSINFO_EHDR: 0xe62000
AT_HWCAP: fpu vme de pse tsc msr pae mce cx8 apic
 mtrr pge mca cmov pat pse36 clflush dts
 acpi mmx fxsr sse sse2 ss ht tm pbe
AT_PAGESZ: 4096
AT_CLKTCK: 100
AT_PHDR: 0x8048034
AT_PHENT: 32
AT_PHNUM: 8
AT_BASE: 0x686000
AT_FLAGS: 0x0
AT_ENTRY: 0x80482e0
AT_UID: 1002
AT_EUID: 1002
AT_GID: 1000
AT_EGID: 1000
AT_SECURE: 0
AT_RANDOM: 0xbff09acb

 void (*init) (void),
 void (*fini) (void),
 void (*rtld_fini) (void),
 void (* stack_end));

So we expect _start to push those arguments on the stack in reverse order before the call to __libc_start_main.

Stack contents just before call of __libc_start_main

value __libc_start_main arg content

$eax Don't know. Don't care.

%esp void (*stack_end) Our aligned stack pointer.

%edx void (*rtld_fini)(void)
Destructor of dynamic linker from loader passed in %edx.
Registered by __libc_start_main with __cxat_exit()
to call the FINI for dynamic libraries that got loaded before us.

0x8048400 void (*fini)(void) __libc_csu_fini - Destructor of this program.
Registered by __libc_start_main with __cxat_exit().

0x80483a0 void (*init)(void) __libc_csu_init, Constructor of this program.
Called by __libc_start_main before main.

%ecx char **ubp_av argv off of the stack.

%esi arcg argc off of the stack.

0x8048394
int(*main)(int,
char**,char**)

main of our program called by __libc_start_main.
Return value of main is passed to exit() which terminates our
program.

__libc_csu_fini is linked into our code from glibc, and lives in the source tree in csu/elf-init.c. It's our program's
C level destructor, and I'll look at it later in the white paper.

Hey! Where's the environment variables?

Did you notice that we didn't get envp,
the pointer to our environment
variables off the stack? It's not one of
the arguments to __libc_start_main,
either. But we know that main is called

int main(int argc, char** argv, char** envp) so what's up?

Well, __libc_start_main calls __libc_init_first, who immediately uses secret inside information to find the
environment variables just after the terminating null of the argument vector and then sets a global variable
__environ which __libc_start_main uses thereafter whenever it needs it including when it calls main. After the
envp is established, then __libc_start_main uses the same trick and surprise! Just past the terminating null at the
end of the envp array, there's another vector, the ELF auxiliary vector the loader uses to pass some information
to the process. An easy way to see what's in there is to set the environment variable LD_SHOW_AUXV=1 before
running the program. Here's the result for our prog1.

Isn't that interesting. All sorts of
information. The AT_ENTRY is the
address of _start, there's our userid,
our effective userid, and our groupid.
We know we're a 686, times()
frequency is 100, clock-ticks/s? I'll have
to investigate this. The AT_PHDR is
the location of the ELF program header
that has information about the location
of all the segments of the program in
memory and about relocation entries,
and anything else a loader needs to
know. AT_PHENT is just the number of
bytes in a header entry. We won't
chase down this path just now, since
we don't need that much information

Saving to Security

Linux x86 Program Start Up

1/19/2020 Linux x86 Program Start Up

dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html 4/12

AT_EXECFN: ./prog1
AT_PLATFORM: i686

 080483a0 <__libc_csu_init>:
 80483a0: 55 push %ebp
 80483a1: 89 e5 mov %esp,%ebp
 80483a3: 57 push %edi
 80483a4: 56 push %esi
 80483a5: 53 push %ebx
 80483a6: e8 5a 00 00 00 call 8048405 <__i686.get_pc_thunk.bx>
 80483ab: 81 c3 49 1c 00 00 add $0x1c49,%ebx
 80483b1: 83 ec 1c sub $0x1c,%esp
 80483b4: e8 bb fe ff ff call 8048274 <_init>
 80483b9: 8d bb 20 ff ff ff lea -0xe0(%ebx),%edi
 80483bf: 8d 83 20 ff ff ff lea -0xe0(%ebx),%eax
 80483c5: 29 c7 sub %eax,%edi
 80483c7: c1 ff 02 sar $0x2,%edi
 80483ca: 85 ff test %edi,%edi
 80483cc: 74 24 je 80483f2 <__libc_csu_init+0x52>
 80483ce: 31 f6 xor %esi,%esi
 80483d0: 8b 45 10 mov 0x10(%ebp),%eax
 80483d3: 89 44 24 08 mov %eax,0x8(%esp)
 80483d7: 8b 45 0c mov 0xc(%ebp),%eax
 80483da: 89 44 24 04 mov %eax,0x4(%esp)
 80483de: 8b 45 08 mov 0x8(%ebp),%eax
 80483e1: 89 04 24 mov %eax,(%esp)
 80483e4: ff 94 b3 20 ff ff ff call *-0xe0(%ebx,%esi,4)
 80483eb: 83 c6 01 add $0x1,%esi

about the loading of a file to be an
effective program debugger.

__libc_start_main in general

That's about as much as I'm going to get into the nitty-gritty details of how __libc_start_main, but in general, it

Takes care of some security problems with setuid setgid programs
Starts up threading
Registers the fini (our program), and rtld_fini (run-time loader) arguments to get run by at_exit to run

the program's and the loader's cleanup routines
Calls the init argument

Calls the main with the argc and argv arguments passed to it and with the global __environ argument as

detailed above.
Calls exit with the return value of main

Calling the init argument

The init argument, to __libc_start_main, is set to __libc_csu_init which is also linked into our code. It's
compiled from a C program which lives in the glibc source tree in csu/elf-init.c and linked into our program. The C
code is similar to (but with a lot more #ifdefs),

This is our program's constructor

It's pretty important to our program
because it's our executable's
constructor. "Wait!", you say, "This isn't
C++!". Yes that's true, but the concept
of constructors and destructors doesn't
belong to C++, and preceeded C++!
Our executable, and every other
executable gets a C level constructor
__libc_csu_init and a C level
destructor, __libc_csu_fini. Inside
the constructor, as you'll see, the executable will look for global C level constructors and call any that it finds. It's
possible for a C program to also have these, and I'll demonstrate it before this paper is through. If it makes you
more comfortable though, you can call them initializers and finalizers. Here's the assembler generated for
__libc_csu_init.

What
the heck
is a
thunk?

Not
much
to talk
about
here,
but I

void
__libc_csu_init (int argc, char **argv, char **envp)
{

 _init ();

 const size_t size = __init_array_end - __init_array_start;
 for (size_t i = 0; i < size; i++)
 (*__init_array_start [i]) (argc, argv, envp);
}

Saving to Security

Linux x86 Program Start Up

1/19/2020 Linux x86 Program Start Up

dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html 5/12

 80483ee: 39 fe cmp %edi,%esi
 80483f0: 72 de jb 80483d0 <__libc_csu_init+0x30>
 80483f2: 83 c4 1c add $0x1c,%esp
 80483f5: 5b pop %ebx
 80483f6: 5e pop %esi
 80483f7: 5f pop %edi
 80483f8: 5d pop %ebp
 80483f9: c3 ret

push %ebx
call __get_pc_thunk_bx
add $_GLOBAL_OFFSET_TABLE_,%ebx

__get_pc_thunk_bx:
movel (%esp),%ebx
return

thought you'd want to see it. The get_pc_thunk thing is a little interesting. It's used for position independent code.
They're setting up for position independent code to be able to work. In order for it to work, the base pointer needs
to have the address of the GLOBAL_OFFSET_TABLE. The code had something like:

So,
look

closely at what happens. The call to __get_pc_thunk_bx, like all other calls, pushes onto the stack the address
of the next instruction, so that when we return, the execution continues at the next consecutive instruction. In this
case, what we really want is that address. So in __get_pc_thunk_bx, we copy the return address from the stack
into %ebx. When we return, the next instruction adds to it _GLOBAL_OFFSET_TABLE_ which resolves to the
difference between the current address and the global offset table used by position independent code. That table
keeps a set of pointers to data that we want to access, and we just have to know offsets into the table. The loader
fixes up the address in the table for us. There is a similar table for accessing procedures. It could be really
tedious to program this way in assembler, but you can just write C or C++ and pass the -pic argument to the
compiler and it will do it automagically. Seeing this code in the assembler tells you that the source code was
compiled with the -pic flag.

But what is that loop?

The loop from __libc_csu_init will be discussed in a minute after we discuss the init() call that really calls
_init. For now, just remember that it calls any C level initializers for our program.

_init gets the call

Ok, the loader handed control to _start, who called __libc_start_main who called __libc_csu_init who
now calls _init.

08048274 <_init>:
 8048274: 55 push %ebp
 8048275: 89 e5 mov %esp,%ebp
 8048277: 53 push %ebx
 8048278: 83 ec 04 sub $0x4,%esp
 804827b: e8 00 00 00 00 call 8048280 <_init+0xc>
 8048280: 5b pop %ebx
 8048281: 81 c3 74 1d 00 00 add $0x1d74,%ebx (.got.plt)
 8048287: 8b 93 fc ff ff ff mov -0x4(%ebx),%edx
 804828d: 85 d2 test %edx,%edx
 804828f: 74 05 je 8048296 <_init+0x22>
 8048291: e8 1e 00 00 00 call 80482b4 <__gmon_start__@plt>
 8048296: e8 d5 00 00 00 call 8048370 <frame_dummy>
 804829b: e8 70 01 00 00 call 8048410 <__do_global_ctors_aux>
 80482a0: 58 pop %eax
 80482a1: 5b pop %ebx
 80482a2: c9 leave
 80482a3: c3 ret

It starts with the regular C calling convention

If you want to know more about the C calling convention, just look at Basic Assembler Debugging with GDB. The
short story is that we save our caller's base pointer on the stack and point our base pointer at the top of the stack
and then save space for a 4 byte local of some sort. An interesting thing is the first call. It's purpose is quite
similar to that call to get_pc_thunk that we saw earlier. If you look closely, the call is to the next sequential
address! That gets you to the next address as if you'd just continued, but with the side effect that the address is
now on the stack. It gets popped into %ebx and then used to set up for access to the global access table.

Show me your best profile

Saving to Security

Linux x86 Program Start Up

http://dbp-consulting.com/tutorials/debugging/basicAsmDebuggingGDB.html

1/19/2020 Linux x86 Program Start Up

dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html 6/12

#include <stdio.h>

void __attribute__ ((constructor)) a_constructor() {
 printf("%s\n", __FUNCTION__);
}

int
main()
{
 printf("%s\n",__FUNCTION__);
}

$./prog2
a_constructor
main
$

Then we grab the address of gmon_start. If it's zero then we don't call it, instead we jump past it. Otherwise, we
call it to set up profiling. It runs a routine to start profiling, and calls at_exit to schedule another routine to run later
to write gmon.out at the end of execution.

This guy's no dummy! He's been framed!

In either case, next we call frame_dummy. The intention is to call __register_frame_info, but frame_dummy is
called to set up the arguments to it. The purpose of this is to set up for unwinding stack frames for exception
handling. It's interesting, but not a part of this discussion, so I'll leave it for another tutorial perhaps. (Don't be too
disappointed, in our case, it doesn't get run anyway.)

Finally we're getting constructive!

Finally we call _do_global_ctors_aux. If you have a problem with your program that occurs before main starts,
this is probably where you'll need to look. Of course, constructors for global C++ objects are put in here but it's
possible for other things to be in here as well.

Let's set up an example

Let's modify our prog1 and make a prog2. The exciting part is the __attribute__ ((constructor)) that tells
gcc that the linker should stick a pointer to this in the table used by __do_global_ctors_aux. As you can see,
our fake constructor gets run. (__FUNCTION__ is filled in by the compiler with the name of the function. It's gcc
magic.)

prog2's _init, much the same as prog1

In a minute we'll drop into gdb and see it happen. We'll be going into prog2's _init.

08048290 <_init>:
 8048290: 55 push %ebp
 8048291: 89 e5 mov %esp,%ebp
 8048293: 53 push %ebx
 8048294: 83 ec 04 sub $0x4,%esp
 8048297: e8 00 00 00 00 call 804829c <_init+0xc>
 804829c: 5b pop %ebx
 804829d: 81 c3 58 1d 00 00 add $0x1d58,%ebx
 80482a3: 8b 93 fc ff ff ff mov -0x4(%ebx),%edx
 80482a9: 85 d2 test %edx,%edx
 80482ab: 74 05 je 80482b2 <_init+0x22>
 80482ad: e8 1e 00 00 00 call 80482d0 <__gmon_start__@plt>
 80482b2: e8 d9 00 00 00 call 8048390 <frame_dummy>
 80482b7: e8 94 01 00 00 call 8048450 <__do_global_ctors_aux>
 80482bc: 58 pop %eax
 80482bd: 5b pop %ebx
 80482be: c9 leave
 80482bf: c3 ret

As you can see, the addresses are slightly different than in prog1. The extra bit of data seems to have shifted
things 28 bytes. So, there's the name of the two functions, "a_constructor" (14 bytes with null terminator), and
"main" (5 bytes with null terminator) and the two format strings, "%s\n" (2*4 bytes with the newline as 1 character
and the null terminator), so 14 + 5 + 4 + 4 = 27? Hmmm off by one somewhere. It's just a guess anyway, I didn't

Saving to Security

Linux x86 Program Start Up

1/19/2020 Linux x86 Program Start Up

dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html 7/12

__do_global_ctors_aux (void)
{
 func_ptr *p;
 for (p = __CTOR_END__ - 1; *p != (func_ptr) -1; p--)
 (*p) ();
}

08048450 <__do_global_ctors_aux>:
 8048450: 55 push %ebp
 8048451: 89 e5 mov %esp,%ebp
 8048453: 53 push %ebx
 8048454: 83 ec 04 sub $0x4,%esp
 8048457: a1 14 9f 04 08 mov 0x8049f14,%eax
 804845c: 83 f8 ff cmp $0xffffffff,%eax
 804845f: 74 13 je 8048474 <__do_global_ctors_aux+0x24>
 8048461: bb 14 9f 04 08 mov $0x8049f14,%ebx
 8048466: 66 90 xchg %ax,%ax
 8048468: 83 eb 04 sub $0x4,%ebx
 804846b: ff d0 call *%eax
 804846d: 8b 03 mov (%ebx),%eax
 804846f: 83 f8 ff cmp $0xffffffff,%eax
 8048472: 75 f4 jne 8048468 <__do_global_ctors_aux+0x18>
 8048474: 83 c4 04 add $0x4,%esp
 8048477: 5b pop %ebx
 8048478: 5d pop %ebp
 8048479: c3 ret

go and look. Anyway, we're going to break on the call to __do_global_ctors_aux, and then single step and watch
what happens.

And here's the code that will get called

Just to help, here's the C source code for __do_global_ctors_aux out of the gcc source code where it lives in a
file gcc/crtstuff.c.

As you can see, it initializes p from a
global variable __CTOR_END__ and
subtracts 1 from it. Remember this is
pointer arithmetic though and the
pointer points at a function, so in this
case, that -1 backs it up one function

pointer, or 4 bytes. We'll see that in the assembler as well. While the pointer doesn't have a value of -1 (cast to a
pointer), we'll call the function we're pointing at, and then back the pointer up again. Obviously, the beginning of
this table starts with -1, and then has some number (perhaps 0) function pointers.

Here's the same in assembler

Here's the assembler that corresponds to it from objdump -d. We'll go over it carefully so you understand it
completely before we trace through it in the debugger.

First the preamble

There's the normal preamble with the addition of saving %ebx as well because we're going to use it in the
function, and we also save room for the pointer p. You'll notice that even though we save room on the stack for it,
we never store it there. p will instead live in %ebx, and *p will live in %eax.

Now set up before the loop

It looks like an optimization has occurred, instead of loading __CTOR_END__ and then subtracting 1 from it, and
dereferencing it, instead, we go ahead and load *(__CTOR_END__ - 1), which is the immediate value
0x8049f14. We load the value in it (remember $0x8049f14 would mean put that value, without the $, just
0x8049f14 means the contents of that address), into %eax. Immediately, we compare this first value with -1 and
if it's equal, we're done and jump to address 0x8048474, where we clean up our stack, pop off the things we've
saved on there and return.

Assuming that there's at least one thing in the function table, though, we also move the immediate value
$0x8049f14, into %ebx which is f our function pointer, and then do the xchg %ax,%ax. What the heck is that?
Well, grasshopper, that is what they use for a nop (No OPeration) in 16 or 32 bit x86. It does nothing but take a
cycle and some space. In this case, it's used to make the loop (the top of the loop is the subtract on the next line)
start on 8048468 instead of 8048466. The advantage of that is that it aligns the start of the loop on a 4 byte
boundary and gives a better chance that the whole loop will fit in a cache line instead of being broken across two.
It speeds things up.

Saving to Security

Linux x86 Program Start Up

1/19/2020 Linux x86 Program Start Up

dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html 8/12

And now we hit the top of the loop

Next we subtract 4 from %ebx to be ready for the next time through the loop, call the function we've got the
address of in %eax, move the next function pointer into %eax, and compare it to -1. If it's not -1 we jump back up
to the subtract and loop again.

And finally the epilogue

Otherwise we fall through into our function epilogue and return to _init, which immediately falls through into its
epilogue and returns to __libc_csu_init__. Bet you forgot all about him. There's still a loop to deal with there
but first--

I promised you we'd go into the debugger with prog2!

So here we go! Remember that gdb always shows you the line or instruction that you are about to execute.

$!gdb
gdb prog2
Reading symbols from /home/patrick/src/asm/prog2...done.
(gdb) set disassemble-next-line on
(gdb) b *0x80482b7
Breakpoint 1 at 0x80482b7

We ran it in the debugger, turned disassemble-next-line on, so that it will always show us the disassembly for
the line of code that is about to be executed, and set a breakpoint at the line in _init where we're about to call
__do_global_ctors_aux.

(gdb) r
Starting program: /home/patrick/src/asm/prog2

Breakpoint 1, 0x080482b7 in _init ()
=> 0x080482b7 <_init+39>: e8 94 01 00 00 call 0x8048450 <__do_global_ctors_aux>
(gdb) si
0x08048450 in __do_global_ctors_aux ()
=> 0x08048450 <__do_global_ctors_aux+0>: 55 push %ebp

I typed r to run the program and hit the breakpoint. My next command to gdb was si, step instruction, to tell gdb
to single step one instruction. We've now entered __do_global_ctors_aux. As we go along you'll see times
when it seems that I entered no command to gdb. That's because, if you simply press return, gdb will repeat the
last instruction. So if I press enter now, I'll do another si.

(gdb)
0x08048451 in __do_global_ctors_aux ()
=> 0x08048451 <__do_global_ctors_aux+1>: 89 e5 mov %esp,%ebp
(gdb)
0x08048453 in __do_global_ctors_aux ()
=> 0x08048453 <__do_global_ctors_aux+3>: 53 push %ebx
(gdb)
0x08048454 in __do_global_ctors_aux ()
=> 0x08048454 <__do_global_ctors_aux+4>: 83 ec 04 sub $0x4,%esp
(gdb)
0x08048457 in __do_global_ctors_aux ()

Ok, now we've finished the preamble, and the real code is about to start.

(gdb)
=> 0x08048457 <__do_global_ctors_aux+7>: a1 14 9f 04 08 mov 0x8049f14,%eax
(gdb)
0x0804845c in __do_global_ctors_aux ()
=> 0x0804845c <__do_global_ctors_aux+12>: 83 f8 ff cmp $0xffffffff,%eax
(gdb) p/x $eax
$1 = 0x80483b4

I was curious after loading the pointer so I told gdb p/x $eax which means print as hexadecimal the contents of
the register %eax. It's not -1, so we can assume that we'll continue through the loop. Now, since my last command

Saving to Security

Linux x86 Program Start Up

1/19/2020 Linux x86 Program Start Up

dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html 9/12

was the print, I can't hit enter to get an si, I'll have to type it the next time.

(gdb) si
0x0804845f in __do_global_ctors_aux ()
=> 0x0804845f <__do_global_ctors_aux+15>: 74 13 je 0x8048474 <__do_global_ctors_aux+36>
(gdb)
0x08048461 in __do_global_ctors_aux ()
=> 0x08048461 <__do_global_ctors_aux+17>: bb 14 9f 04 08 mov $0x8049f14,%ebx
(gdb)
0x08048466 in __do_global_ctors_aux ()
=> 0x08048466 <__do_global_ctors_aux+22>: 66 90 xchg %ax,%ax
(gdb)
0x08048468 in __do_global_ctors_aux ()
=> 0x08048468 <__do_global_ctors_aux+24>: 83 eb 04 sub $0x4,%ebx
(gdb)
0x0804846b in __do_global_ctors_aux ()
=> 0x0804846b <__do_global_ctors_aux+27>: ff d0 call *%eax
(gdb)
a_constructor () at prog2.c:3
3 void __attribute__ ((constructor)) a_constructor() {
=> 0x080483b4 <a_constructor+0>: 55 push %ebp
 0x080483b5 <a_constructor+1>: 89 e5 mov %esp,%ebp
 0x080483b7 <a_constructor+3>: 83 ec 18 sub $0x18,%esp

Now this is very interesting. We've single stepped into the call. Now we're in our function, a_constructor. Since
gdb has the source code for it, it shows us the C source for the next line. Since I turned on
disassemble-next-line, it will also give us the assembler that corresponds to that line. In this case, it's the
preamble for the function that corresponds to the declaration of the function, so we get all three lines of the
preamble. Isn't that interesting? Now I'm going to switch over to the command n (for next) because our printf is
coming up. The first n will skip the preamble, the second the printf, and the third the epilogue. If you've ever
wondered why you have to do an extra step at the beginning and end of a function when single stepping with
gdb, now you know the answer.

(gdb) n
4 printf("%s\n", __FUNCTION__);
=> 0x080483ba <a_constructor+6>: c7 04 24 a5 84 04 08 movl $0x80484a5,(%esp)
 0x080483c1 <a_constructor+13>: e8 2a ff ff ff call 0x80482f0 <puts@plt>

We moved the address of the string "a_constructor" onto the stack as an argument for printf, but it calls puts
since the compiler was smart enough to see that puts was all we needed.

(gdb) n
a_constructor
5 }
=> 0x080483c6 <a_constructor+18>: c9 leave
 0x080483c7 <a_constructor+19>: c3 ret

Since we're tracing the program, it is, of course running, so we see a_constructor print out above. The closing
brace (}) corresponds to the epilogue so that prints out now. Just a note, if you don't know about the instruction
leave it does exactly the same as

 movl %ebp, %esp
 popl %ebp

One more step and we exit the function and return, I'll have to switch back to si.

(gdb) n
0x0804846d in __do_global_ctors_aux ()
=> 0x0804846d <__do_global_ctors_aux+29>: 8b 03 mov (%ebx),%eax
(gdb) si
0x0804846f in __do_global_ctors_aux ()
=> 0x0804846f <__do_global_ctors_aux+31>: 83 f8 ff cmp $0xffffffff,%eax
(gdb)
0x08048472 in __do_global_ctors_aux ()
=> 0x08048472 <__do_global_ctors_aux+34>: 75 f4 jne 0x8048468 <__do_global_ctors_aux+24>

Saving to Security

Linux x86 Program Start Up

1/19/2020 Linux x86 Program Start Up

dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html 10/12

(gdb) p/x $eax
$2 = 0xffffffff

Got curious and checked again. This time, our function pointer is -1, so we'll exit the loop.

(gdb) si
0x08048474 in __do_global_ctors_aux ()
=> 0x08048474 <__do_global_ctors_aux+36>: 83 c4 04 add $0x4,%esp
(gdb)
0x08048477 in __do_global_ctors_aux ()
=> 0x08048477 <__do_global_ctors_aux+39>: 5b pop %ebx
(gdb)
0x08048478 in __do_global_ctors_aux ()
=> 0x08048478 <__do_global_ctors_aux+40>: 5d pop %ebp
(gdb)
0x08048479 in __do_global_ctors_aux ()
=> 0x08048479 <__do_global_ctors_aux+41>: c3 ret
(gdb)
0x080482bc in _init ()
=> 0x080482bc <_init+44>: 58 pop %eax

Notice we're back in _init now.

(gdb)
0x080482bd in _init ()
=> 0x080482bd <_init+45>: 5b pop %ebx
(gdb)
0x080482be in _init ()
=> 0x080482be <_init+46>: c9 leave
(gdb)
0x080482bf in _init ()
=> 0x080482bf <_init+47>: c3 ret
(gdb)
0x080483f9 in __libc_csu_init ()
=> 0x080483f9 <__libc_csu_init+25>: 8d bb 1c ff ff ff lea -0xe4(%ebx),%edi
(gdb) q
A debugging session is active.

 Inferior 1 [process 17368] will be killed.

Quit anyway? (y or n) y
$

Notice we jumped back up into __libc_csu_init, and that's when I typed q to quite the debugger. That's all the
debugging I promised you. Now that we're back in __libc_csu_init__ there's another loop to deal with, and I'm not
going to step through it, but I am about to talk about it.

Back up to __libc_csu_init__

Since we've spent a long tedious time dealing with a loop in assembler and the assembler for this one is even
more tedious, I'll leave it to you to figure it out if you want. Just to remind you, here it is in C.

void
__libc_csu_init (int argc, char **argv, char **envp)
{

 _init ();

 const size_t size = __init_array_end - __init_array_start;
 for (size_t i = 0; i < size; i++)
 (*__init_array_start [i]) (argc, argv, envp);
}

Here's another function call loop

What is this __init_array? I thought you'd never ask. You can have code run at this stage as well. Since this is just
after returning from running _init which ran our constructors, that means anything in this array will run after

Saving to Security

Linux x86 Program Start Up

1/19/2020 Linux x86 Program Start Up

dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html 11/12

constructors are done. You can tell the compiler you want a function to run at this phase. The function will receive
the same arguments as main.

void init(int argc, char **argv, char **envp) {
 printf("%s\n", __FUNCTION__);
}

__attribute__((section(".init_array"))) typeof(init) *__init = init;

We won't do it, yet, because there's more things like that. Lets just return from __lib_csu_init. Do you
remember where that will take us?

We'll be all the way back in __libc_start_main__

He calls our main now, and then passes the result to exit().

exit() runs some more loops of functions

exit() runs the functions registered with at_exit run in the order they were added. Then he runs another loop of
functions, this time, functions in the fini array. After that he runs another loop of functions, this time destructors.
(In reality, he's in a nested loop dealing with an array of lists of functions, but trust me this is the order they come
out in.) Here, I'll show you.

This program, hooks.c ties it all together

#include <stdio.h>

void preinit(int argc, char **argv, char **envp) {
 printf("%s\n", __FUNCTION__);
}

void init(int argc, char **argv, char **envp) {
 printf("%s\n", __FUNCTION__);
}

void fini() {
 printf("%s\n", __FUNCTION__);
}

__attribute__((section(".init_array"))) typeof(init) *__init = init;
__attribute__((section(".preinit_array"))) typeof(preinit) *__preinit = preinit;
__attribute__((section(".fini_array"))) typeof(fini) *__fini = fini;

void __attribute__ ((constructor)) constructor() {
 printf("%s\n", __FUNCTION__);
}

void __attribute__ ((destructor)) destructor() {
 printf("%s\n", __FUNCTION__);
}

void my_atexit() {
 printf("%s\n", __FUNCTION__);
}

void my_atexit2() {
 printf("%s\n", __FUNCTION__);
}

int main() {
 atexit(my_atexit);
 atexit(my_atexit2);
}

If you build and run this, (I call it hooks.c), the output is

$./hooks
preinit
constructor
init

Saving to Security

Linux x86 Program Start Up

1/19/2020 Linux x86 Program Start Up

dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html 12/12

my_atexit2
my_atexit
fini
destructor
$

The End

I'll give you a last look at how far we've come. This time it should all be familiar territory to you.

(Back to debugging.)

Saving to Security

Linux x86 Program Start Up

http://dbp-consulting.com/tutorials/debugging/index.html

