
Yizhou Shan
Final Defense

Mar 04, 2022

1

Committee
Professor Yiying Zhang (Chair)
Professor George C. Papen
Professor Alex C. Snoeren
Professor Stefan Savage
Professor Geoffrey M. Voelker

Distributing and Disaggregating
Hardware Resources

in Data Centers
Yizhou Shan

Mar 2022

2

Committee
Professor Yiying Zhang (Chair)

Professor George C. Papen

Professor Alex C. Snoeren

Professor Stefan Savage

Professor Geoffrey M. Voelker

Modern Data Centers
• Data centers are large, complex, consolidated facilities

• They host workloads from various industries

• They run applications affecting billion people’s daily life

• Cloud vendors transform them into a “public computing utility”

3

Google Data Center Top Cloud Vendors

Exciting and Challenging Time to be a

Data Center Architect

4

Applications
Fast-changing, high-demand,

heterogeneous,

emerging industries

Hardware
Specialized,

faster,

domain-specific

Google VPU

Microsoft FPGA

Data Center’s Unit of Deployment:

Monolithic Server

5

More fine-grained and
distributed

Faster and
heterogeneous

Unfortunately, it is becoming extremely difficult to
fit both onto the monolithic servers!

Applications Hardware

Root Cause: the Monolithic Server Model

• The Monolithic Server WALL

• Bin-packing issue (utilization)

• Fate-sharing failure domain (isolation)

• No independent resource scaling (elasticity)

• Hard to add extra resources due to limited slots (heterogeneity)

• It was a blessing for deployment, but hitting limitations now

6

How to improve resource utilization,
elasticity, heterogeneity, and fault tolerance?

Go beyond
physical server boundary!

7

Hardware Resource Disaggregation

8

Break monolithic servers into network-attached resource pools

Network

Hardware Resource Disaggregation
Break monolithic servers into network-attached resource pools

9

Network

Disaggregate

Hardware Resource Disaggregation
Break monolithic servers into network-attached resource pools

10

Network

• Independent resource scaling
• Better support for heterogeneity
• Independent failure domain
• No bin-packing issue

TPU

Hardware Resource Disaggregation

Disaggregate

11

Break monolithic servers into network-attached resource pools

Dissertation Statement

12

Problem
Despite hardware resource disaggregation’s great promises,

it is a drastic departure from the traditional computing paradigm.

It was not clear how to deploy it in practical settings.

Statement
This dissertation shows that it is possible to overcome the challenge of building
and deploying hardware resource disaggregation in real data centers, delivering

its promises on better manageability, scalability, and cost.

This dissertation advances the state-of-art of this area,

transforming it from a vague research proposal into one that is tangible,

practical, deployable, and can be approached quantitatively.

Outline
• Intro

• Background on Resource Disaggregation

• Projects Conducted

• Logical Disaggregation [Hotpot, SoCC’17]

• Physical Disaggregation [LegoOS, OSDI’18]

• Hybrid Disaggregation [Clio, ASPLOS’22]

• Network Disaggregation [SuperNIC, arXiv’21, under submission]

• Future Work

• Conclusion

13

Traditional Resource Disaggregation

14

Essence
Decoupling

 Independent Scaling
Independent Failure

C
on

tro
l P

la
ne

D
at

a
Pl

an
e

OpenFlow
SDN Switch

ServersServers ServersServers

OpenFlow
SDN Switch

Google Orion SDN

ML Training

ML

Workers

ML

Workers

ML

Workers

Parameter

Server

Parameter

Server

The Resource Disaggregation idea
is basically everywhere

in data centers!

just in different granularities

Examples in Data Centers

Storage Disaggregation

Compute

Pool

Storage

Pool
Storage

Pool
Compute

Pool

Distributed Filesystem

[Tectonic, FAST’21]

ServersServersServers

Hardware resource disaggregation, is it just another buzzword?

Another “old wine in a new bottle”?

Traditional 
Resource Disaggregation

Hardware 
Resource Disaggregation

Hold on..
They are actually quite different!

Have you asked yourself these questions?
1. Ok, but how could CPU work w/o memory?

2. Network is slower than the memory bus, the perf must be horrible?

3. Wait, are you telling me Linux no longer works??

4. What about the network? How could it support all these devices?

5. How can you even deploy this thing? Chicken-egg problem, no?

Network

Resource Disaggregation is a general idea
with a wide design spectrum

that unifies everything

Our Observation

Logical Physical

Resource Disaggregation Spectrum Unified?

Love it!!

15

Resource
Disaggregation

Cooking Recipes

End of the day, the so-called researchers

are just chefs trying to find a right recipe.

- Heisenberg

Using various ingredients and recipes,
I show that it is possible to achieve

disaggregation’s great promises.

Disaggregated Devices and Servers

System Software

The Ingredients

devices servers

CPUCPUCPU
CPUCPUMem

CPUCPUMetadata
CPUCPUGPU

Interconnect

GPUGPU

The Ultimate
Conceptual View

Resource Pools

Resource Disaggregation’s Cooking Formula

16

Logical

(w/ servers)

CPUCPUCPU CPUCPUMem

CPUCPUSSD CPUCPUGPU

Interconnect

GPUGPU

The Resource
Conceptual View

Physical

(w/ devices)

Server Server

Server Server

Server Server

mem cpu

storage

Device Device

Device Device

Device Device

Device

Device

Device

Server

Server

Server

Hybrid

(w/ servers & devices)

The conceptual view

logically

maps to the servers

(has indirection layer)

The conceptual view

physically

maps to the devices

(no indirection layer)

The conceptual view

is a hybrid

of servers and devices

The Physical Set of
Devices and Servers

devices servers

mem cpu

storage

Resource Disaggregation Design (Cooking) Spectrum (Recipes)

17

Resource Disaggregation Design (Cooking) Spectrum (Recipes)
Logical

(w/ servers)
Physical

(w/ devices)

Server Server

Server Server

Server Server

mem cpu

storage

Device Device

Device Device

Device Device

Device

Device

Device

Server

Server

Server

Hybrid

(w/ servers & devices)

mem cpu

storage

Part 1
Distributed Shared
Persistent Memory

[Hotpot, SoCC’17]

Part 2
Disaggregated

Operating System
[LegoOS, OSDI’18]

Part 3
Hardware-based

Disaggregated Memory
[Clio, ASPLOS’22]

Part 4
Disaggregated Networking

For the Masses
[SuperNIC, arXiv’21]

18

Outline
• Background on Resource Disaggregation

• Projects Conducted

• Logical Disaggregation [Hotpot, SoCC’17]

• Physical Disaggregation [LegoOS, OSDI’18]

• Hybrid Disaggregation [Clio, ASPLOS’22]

• Network Disaggregation [SuperNIC, arXiv’21, under submission]

• Future Work

• Conclusion

19

Hotpot
Distributed Shared
Persistent Memory
Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang

[1] Yizhou Shan, Shin-Yeh Tsai, Yiying Zhang. Distributed Shared Persistent Memory, SoCC’17.
[Among the first to propose distributed PM + RDMA solutions]

20

Deploy PM in Data Centers
• Persistent Memory (PM) was an emerging medium

• Byte-addressable, DRAM-alike performance

• Persistent with large capacity

• Very limited research on distributed PM (circa 2017)

• [Mojim, ASPLOS’15] distributed replicated PM

• [Octopus, ATC’17] distributed filesystem on PM

• It was not clear how to best utilize PM in data centers

• What’s the right abstraction?

• How to handle failures?

• How to ensure good performance?

CPU

DRAM PM

Server

Mem
Bus

21

Logical
Disaggregation

Contribution 1
A global
PM Pool

Abstraction

Our Objective: Deploy PM in Data Centers
Efficiently and Practically

Monolithic Servers

System Software:

Hotpot, an in-kernel
distributed system

managing distributed PM

PM

Fault-tolerant
and efficient

(transactional) APIs

CPUCPUCPU CPUCPUMem CPUCPUSSD

PMPMDistributed Shared
PM (DSPM)

Contribution 2
Runtime & APIs

Graph KVS Filesystem

22

23

Distributed Shared Persistent Memory (DSPM)

Hotpot Architecture

PM

CPU Mem SSD NIC

OS

App Threads

Server 1

PM

CPU Mem SSD NIC

OS

App Threads

RDMA
Hotpot Hotpot

RDMApage

fault

page

fault

load/store load/storedistributed

transaction

distributed

transaction

Server 2RDMA

DSPM

App

Central

Dispatcher

management &

monitoring

APIs &
Runtime

Graph KVS FS

PMPMDSPM

•Distributed Apps

•Hotpot sits in kernel

•Manages local PM

•Exposes a global virtual space

•Unifies memory and storage

•Direct load/store with pgfault

•Distributed transaction APIs

•MRSW: 2PL+2PC

•MRMW: OCC+3PC

Central Dispatcher for global

resource mgmt & monitoring

Hotpot Summary
• Hotpot is among the first to enable distributed PM in data centers

• One layer unifies Distributed Share Memory and Distributed Storage

• A kernel-level system with ACID distributed transactions

• Logical Disaggregation inherent server limitations

• No independent resource scaling

• Large fate-sharing failure domain

• Management complexity & bin-packing

⇒ To avoid those limitations all together,
we took a radical approach: Physical Disaggregation

PM
CPU Mem SSD NIC

OS

App Threads

Hotpot

RDMA

PM
CPU Mem SSD NIC

OS

App Threads

Hotpot

RDMA

PM
CPU Mem SSD NIC

OS

App Threads

Hotpot

RDMA

Hotpot
API

App

PMPMDSPM
The conceptual

resource pool view

Logical

Disaggregation

The Hotpot &

Servers

24

Outline
• Background on Resource Disaggregation

• Projects Conducted

• Logical Disaggregation [Hotpot, SoCC’17]

• Physical Disaggregation [LegoOS, OSDI’18]

• Hybrid Disaggregation [Clio, ASPLOS’22]

• Network Disaggregation [SuperNIC, arXiv’21, under submission]

• Future Work

• Conclusion

25

Resource Disaggregation Design (Cooking) Spectrum (Recipes)
Logical

(w/ servers)
Physical

(w/ devices)

Server Server

Server Server

Server Server

mem cpu

storage

Device Device

Device Device

Device Device

Device

Device

Device

Server

Server

Server

Hybrid

(w/ servers & devices)

mem cpu

storage

Part 1
Distributed Shared
Persistent Memory

[Hotpot, SoCC’17]

Part 2
Disaggregated

Operating System
[LegoOS, OSDI’18]

Part 3
Hardware-based

Disaggregated Memory
[Clio, ASPLOS’22; Clover, ATC’20]

Part 4
Disaggregated Networking

For the Masses
[SuperNIC, arXiv’21]

26

Transition from Logical to Physical Disaggregation

(a drastic departure from the traditional computing paradigm)

Network

Physical

(w/ devices)

Device Device

Device Device

Device Device

mem cpu

storage

Resource Disaggregation Design Spectrum

Logical

(w/ servers)

Server Server

Server Server

Server Server

mem cpu

storage

1. How could CPU work w/o memory?

2. Network is slower than memory, what about perf?

3. How to even run the OS or apps?

Challenges

We built a new distributed OS
to solve all problems at once!

27

LegoOS
A Disseminated Distributed OS

for Hardware Resource
Disaggregation

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang
Y4

[2] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang.

LegoOS: A Disseminated Distributed OS for Hardware Resource Disaggregation, OSDI’18. Best Paper Award. 28

Can Existing OSs/Kernels Fit?

Monolithic/Micro-kernel
(e.g., Linux, L4)

Multi-kernel
(e.g., Barrelfish, Helios, fos)

mem

Disk

NIC

CPU

monolithic
kernel

network across servers

Server

mem

Disk

NIC

CPU

microkernel

Server

Core

Kernel

GPU

Kernel

P-NIC

Kernel

Shared Main Memory

msg passing over local bus

Monolithic ServerDisk NIC

29

Access remote resources

Distributed resource mgmt

Fine-grained failure handling

Existing Kernels Don’t Fit

Network

30

The OS should be also

When hardware is
disaggregated

31

OS
Process
Mgmt

Virtual
Memory
System

File &
Storage
System Network

32

Process
Mgmt

Virtual
Memory
System

File &
Storage
System

Network

File &
Storage
System

Network

Network

Network

Network

33

Processor
(CPU)

Memory

The Splitkernel Architecture

• Split OS functions into monitors

• Run each monitor at h/w device

• Network messaging across
non-coherent components

• Distributed resource mgmt and
failure handling

Memory
Monitor

Process
Monitor

network messaging across non-coherent components

GPU
Minitor

Processor
(GPU)

Hard Disk

NVM
Monitor

NVM

SSD
Monitor

SSD

HDD
Monitor

XPU
Manager
New h/w

(XPU)

34

LegoOS
The First Disaggregated OS

Processor

Storage
Memory

NVM

35

LegoOS Design

1. Clean separation of OS and hardware functionalities

2. Build monitor with hardware constraints

3. RDMA-based message passing for both kernel and applications

4. Two-level distributed resource management

5. Memory failure tolerance through replication

36

Separate Processor and Memory

37

Processor

CPU CPU$ $

Last-Level Cache

DRAM

TLB

MMU

PT

Separate Processor and Memory

38

N
et

w
or

k

DRAM

Memory

Disaggregating DRAM

Memory

Processor

CPU CPU$ $

Last-Level Cache TLB

MMU PT

Separate Processor and Memory

39

Processor

CPU CPU$ $

Last-Level Cache
N

et
w

or
k

DRAM

TLB MMU

Memory

Separate and move
hardware units

to memory component

MemoryPT

Separate Processor and Memory

40

Processor

CPU CPU$ $

Last-Level Cache
N

et
w

or
k

DRAM

TLB MMU

Memory

MemoryPT

Virtual Memory

System

Separate Processor and Memory

41

Processor

CPU CPU$ $

Last-Level Cache
N

et
w

or
k

DRAM

TLB MMU

Memory

Separate and move
virtual memory system
to memory component

MemoryPT

Virtual Memory System

Separate Processor and Memory

42

Processor

CPU CPU$ $

Last-Level Cache
N

et
w

or
k

DRAM

TLB MMU

Memory

MemoryPT

Virtual Memory System

Processor components only
see virtual memory addresses

Memory components manage
virtual and physical memory

Virtual
Address

Virtual
Address

Virtual
Address

Virtual
Address

All levels of cache are virtual cache

Challenge: Remote Memory Accesses

• Network is still slower than local memory bus

• Bandwidth: 2x - 4x slower, improving fast

• Latency: ~12x slower, and improving slowly

43

Add Extended Cache at Processor

44

Processor

CPU CPU$ $

Last-Level Cache
N

et
w

or
k

DRAM

TLB MMU

Memory

MemoryPT

Virtual Memory System

Add Extended Cache at Processor

45

Processor

CPU CPU$ $

Last-Level Cache

N
et

w
or

k

DRAM

TLB MMU

Memory

MemoryPT

Virtual Memory System

DRAM ExCache

• Add small DRAM/HBM at processor

• Use it as Extended Cache, or ExCache

• Software and hardware co-managed

• Inclusive

• Virtual cache

Performance Evaluation
• Unmodified TensorFlow, running CIFAR-10

• Working set: 0.9G

• 4 threads

• Systems in comparison

• Baseline: Linux with unlimited memory

• Swap to SSD, and ramdisk

• InfiniSwap [NSDI’17]

ExCache/Memory Size (MB)
128 256 512

S
l
o
w
d
o
w
n

1

3

5

7
Linux−swap−SSD

Linux−swap−ramdisk
InfiniSwap

LegoOS

LegoOS Config: 1P, 1M, 1S

Only 1.3x to 1.7x slowdown when disaggregating devices with LegoOS

To gain better resource packing, elasticity, and fault tolerance!

46

LegoOS Summary
• LegoOS shows that Physical Disaggregation is feasible

• It is possible to disaggregate resources like CPU and memory

• Decent perf slowdown (30%-70%), but with overall improved [perf / $]

• Improved utilization, cost, failure (MTTF), and manageability

• Key enabling techniques

• The Splitkernel architecture for module & failure isolation

• Extended Cache for performance

• Two-level approach for resource management

Processor

Storage

Memory

NVM

47

Problems?
• Devices are emulated using RDMA and CPU

• Non-trivial overheads

• Limited parallelism

• Radical approach, hard to deploy

• extensive hardware and network changes

• uncertain system software and app changes

Servers

Emulate
d

cp me nic
Servers

Emulate
d

cp me nic
Servers

Emulated
Process
Monitor

cpu mem nic

Servers

Emulate
d

cp me nic
Servers

Emulate
d

cp me nic
Servers

Emulated
Memory
Monitor

cpu mem nic

Servers

Emulate
d

cp me nic
Servers

Emulate
d

cp me nic
Servers

Emulated
Storage
Monitor

cpu mem nic

RDMA

⇒ This motivates us to build a real hardware-based
disaggregated device that could actually be deployed

48

Outline
• Background on Resource Disaggregation

• Projects Conducted

• Logical Disaggregation [Hotpot, SoCC’17]

• Physical Disaggregation [LegoOS, OSDI’18]

• Hybrid Disaggregation [Clio, ASPLOS’22]

• Network Disaggregation [SuperNIC, arXiv’21, under submission]

• Future Work

• Conclusion

49

Resource Disaggregation Design (Cooking) Spectrum (Recipes)
Logical

(w/ servers)
Physical

(w/ devices)

Server Server

Server Server

Server Server

mem cpu

storage

Device Device

Device Device

Device Device

Device

Device

Device

Server

Server

Server

Hybrid

(w/ servers & devices)

mem cpu

storage

Part 1
Distributed Shared
Persistent Memory

[Hotpot, SoCC’17]

Part 2
Disaggregated

Operating System
[LegoOS, OSDI’18]

Part 3
Hardware-based

Disaggregated Memory
[Clio, ASPLOS’22]

Part 4
Disaggregated Networking

For the Masses
[SuperNIC, arXiv’21]

50

mem

cpu

storage

Resource Disaggregation Design (Cooking) Spectrum (Recipes)
Logical

(w/ servers)
Physical

(w/ devices)

Server Server

Server Server

Server Server

mem cpu

storage

Device Device

Device Device

Device Device

Device

Device

Device

Server

Server

Server

Hybrid

(w/ servers & devices)

mem cpu

storage

A much easier transition from the current

data center infrastructure

Our goal here is to build a real disaggregated device
and integrate it with the existing infrastructure

We start from the most challenging resource
to disaggregate: memory.

(high perf demand, large capacity, security)

51

(left to right) Increased SpecialityDisaggregated Memory Service Design Spectrum

Transport

Mem

Func

DRAM

Device

Net

I/O

How to Design

Disaggregated Memory Service?

Disaggregated

MemoryServerServerServer

Disaggregated

Memory

Disaggregated

Memory Device

CPU

DRAM RDMA

NICDRAMDRAM

PCIe

Mem

Bus

CPUCPU Transport

Mem

Func

Server

Net

I/O

Optional mem func runs on CPU

Transport offloaded to RNIC

LegoOS, FaRM, HERD

CPU

DRAM Smart

NICDRAMDRAM

PCIe

Mem

Bus

CPUCPU Transport

Mem

Func

Server

Net

I/O

Total offloading onto SmartNIC

(w/ FPGA, SoC, ASIC)
iPipe, StRoM, Pilaf

CPU

DRAM

Normal

NIC

DRAMDRAM
PCIe

Mem

Bus

CPUCPU
Transport

Mem

Func

Server

Net

I/O

Mem serving and net transport

run on CPUs

Traditional DSM

Server box is an overkill for memory disaggregation
- Unused resource

- Limited capacity

- Limited RDMA functionalities

- Limited PCIe performance

Unexplored
Area!

52

Clio: A Hardware-Software Co-Designed
Disaggregated Memory System

Zhiyuan Guo*, Yizhou Shan*, (* equal contribution)

Xuhao Luo, Yutong Huang, and Yiying Zhang

[3] Zhiyuan Guo*, Yizhou Shan*, Xuhao Luo, Yutong Huang, and Yiying Zhang (* equal contribution).

Clio: A Hardware-Software Co-Designed Disaggregated Memory System, ASPLOS’22

53

Our Vision and Design Principles
• Goals

• Scalable: able to support 1K-10K connections

• Huge Memory: able to host TBs of memory

• Performant: low and predictable (tail) latency

• Extensible: able to run user-specific functions

• Principles

• Eliminate states whenever possible

• Move non-critical ops/states to SW, simplify HW design

• Shift ops/states to client side

Transport

Mem

Func

DRAM

Board

network

ServerServerServer

54

Clio Architecture
App

Req Order/Retry
Congestion Ctrl Lib

Local

Mem

Eth

L1+L2

Client Nodes

App

Req Order/Retry
Congestion Ctrl Lib

Local

Mem

Eth

L1+L2

App

Req Order/Retry
CC & In-cast Ctrl Lib

Local

Mem

Eth

L1+L2

Disaggregated Memory Devices (Clio Board)

Off-chip

DRAM

Eth

L1+L2

Addr

Translation

pgfault

Handler

Fast Path (HW)

VA

Alloc

PA

Alloc Mgmt

Slow Path (SW)

Offloads

Extend Path Off-chip

DRAM

Eth

L1+L2

Addr

Translation

pgfault

Handler

Fast Path (HW)

VA

Alloc

PA

Alloc Mgmt

Slow Path (SW)

Offloads

Extend Path Off-chip

DRAM

Eth

L1+L2

Addr

Translation

pgfault

Handler

Fast Path (HW)

VA

Alloc

PA

Alloc Mgmt

Slow Path (SW)

Offloads

Extend Path

Ethernet

• A new customized transport
• RPC-based abstraction

• Sender-driven retransmission, congestion, and in-cast control

• Flexible ordering and consistency model

• Hash table-based Virtual Memory System

• Flat & conflict-free hash table-based virtual memory

• in-hardware in-line page fault handling

• Framework to deploy user-specific logic
55

Slow Path
 - SoC
 - Software

Fast Path
 - ASIC + FPGA
 - Transport + VM

Extend Path
 - FPGA
 - User logic

Implementation

• Xilinx ZCU106 ARM-FPGA board
• Shell adopted from Corundum

• Fast & extended path in SpinalHDL

• Slow path runs on ARM SoC

• Applications
• Image compression

• Multi-version object store

• KVS

• Pointer-chasing

Clio prototype on the Xilinx ZCU106 board

56

Ac
ce

ss
 L

at
en

cy

(µ
s)

0

0.95

1.9

2.85

3.8

Read Latency (16B)

• 100Gbps throughput, 2.8µs (avg) 3.2µs (p99) latency

• Orders of magnitude lower tail latency than RDMA
• Outperforms Clover [ATC’20], LegoOS [OSDI’18], and HERD [SIGCOMM’14]

Ac
ce

ss
 L

at
en

cy

(µ
s)

0

1.75

3.5

5.25

7

4B 64B 256B 512B 1KB

 Clio Clover HERD LegoOS

Remote Write Latency

16.8ms

2.8µs

Pa
ge

 F
au

lt

M
R

 M
is

s

PT
E

M
is

s

Pa
ge

 F
au

lt

PT
E

M
is

s

Clio Eval - Basic Numbers

57

Clio outperforms other RDMA-based Disaggregated Memory Systems

• Clio provides bounded access time for data requests
• Clio scales well with concurrent clients and total memory size

Ac
ce

ss
 L

at
en

cy

(µ
s)

0

1.25

2.5

3.75

5

0 4 8 12 18 20

RDMA-CX3 RDMA-CX5 Clio

Number of Pages (2^n)
Ac

ce
ss

 L
at

en
cy

(µ

s)

0

1150

2300

3450

4600

1 200 400 600 800 1K

RDMA-CX3 RDMA-CX5 Clio

Number of Concurrent Clients

Bounded Tail Latency

Clio Eval - Scalability

Standalone Clio board ALSO has lower CapEx and OpEx

compared to the RDMA solution!

(could be up to 30% and 60%, respectively)

58

Clio Summary
• Clio shows that building disaggregated devices is REWARDING

• Hardware-software co-design is important for disaggregated devices

• Overhaul the network transport and virtual memory system

• ==> Better performance, Lower CapEx and OpEx than commercial solutions!

• Problems?

• Do we need to do the exact same thing for each disaggregated device?

• Will vendors adopt our networking solution in their products?

⇒ We turned out attention to the long overlooked resource

 Network
59

Off-
chip

DRAMEth
 Addr
pgfa
Fast

VA
 PA
 M

Slow
Offlo
Exten

Off-
chip

DRAMEth
 Addr
pgfa
Fast

VA
 PA
 M

Slow
Offlo
Exten Off-chip

DRAM
Eth

Fast
Path

Slow
Path

Extend
 Path

Outline
• Background on Resource Disaggregation

• Projects Conducted

• Logical Disaggregation [Hotpot, SoCC’17]

• Physical Disaggregation [LegoOS, OSDI’18]

• Hybrid Disaggregation [Clio, ASPLOS’22]

• Network Disaggregation [SuperNIC, arXiv’21, under submission]

• Future Work

• Conclusion

60

Resource Disaggregation Design (Cooking) Spectrum (Recipes)
Logical

(w/ servers)
Physical

(w/ devices)

Server Server

Server Server

Server Server

mem cpu

storage

Device Device

Device Device

Device Device

Device

Device

Device

Server

Server

Server

Hybrid

(w/ servers & devices)

mem cpu

storage

Part 1
Distributed Shared
Persistent Memory

[Hotpot, SoCC’17]

Part 2
Disaggregated

Operating System
[LegoOS, OSDI’18]

Part 3
Hardware-based

Disaggregated Memory
[Clio, ASPLOS’22; Clover, ATC’20]

Part 4
Disaggregated Networking

For the Masses
[SuperNIC, arXiv’21]

61

Disaggregating and Consolidating
Network Functionalities with

SuperNIC
Yizhou Shan, Will Lin, Ryan Kosta,

Arvind Krishnamurthy, and Yiying Zhang

62

What others say about SuperNIC

• Colleague A: This is THE most elegant solution I’ve ever seen

• Colleague B: I can’t agree more

• Colleague C: I wish all my projects could be like this one

• Colleague D: I wish all my students were like you

63

“The Problem”

• Professor: Those NICs, they are a problem for disaggregation.

• Me: How come?

• Professor: Well, they are kind of slow and weak. Just.. mediocre.

• Me: Ok. Hold my beer.

64

“The Solution”

SuperNICMediocreNIC

65

Let’s talk about SuperNIC.

66

SuperNIC

HTG-9200
- 9x100G QSFP
- Xilinx VU9P
- 8GB DRAM

67

Special Thanks
• The FPGA Ninja himself - Alex Forencich

• For sponsoring two boards

• For helping us on numerous debugging sessions

Approved

68

What’s next for resource disaggregation?

• Resources already disaggregated

• Processing (e.g., CPU, GPU, TPU)

• Memory (e.g., DRAM, PM)

• Storage (e.g., SSD)

• But network is completely left out!

69

Hold on..

Can we disaggregate network?

70

NIC

TCP Stack /

Virtualization Switch

Mem

CPU

SSD

CPU

Network

Functions Apps

Server w/ normal NIC Server w/ RDMA NIC

RDMA

NICMem

CPU

SSD

CPU

Network

Functions Apps

Disaggregated Devices

ToRRDMA

NICMemMem RDMA

NICMem

Mem
FPGA

Mem
net

stack

NIC
Mem

SoC
NIC

Mem
SoC

net

stack

Network
Transport

Session

Data Link
Physical

Presentation
Application

Network
Transport

Network

Interface

ApplicationKVS, VPC, 
Database

TCP, RoCE,
eRPC, Homa

Ethernet, InfiniBand,
PCIe link

O
SI

 M
od

el Our Insights
Everything above data link layer

can potentially be disaggregated!

71

CPU

network

CPU

network

CPU

network

CPU

network

CPU

network

Mem

network

CPU

network

CPU

network

SSD

network
CPU

network

CPU

network

Server

network

Datacenter

Network

72

CPUCPUCPU
CPUCPUMem CPUCPUSSD

CPUCPUServer

Datacenter

Network

Network

Pool

Network

Pool

73

CPU

network

CPU

network

CPU

network

CPU

network

CPU

network

Mem

network

CPU

network

CPU

network

SSD

network
CPU

network

CPU

network

Server

network

Datacenter

Network

CPUCPUCPU
CPUCPUMem CPUCPUSSD

CPUCPUServer

Datacenter

Network

Network

Pool

Network

PoolDisaggregate

Consolidate

Disaggregate Network Modules from Endpoints and
Consolidate Them Into a Network Resource Pool

Providing Network-as-a-Service 74

CPU

network

CPU

network

CPU

network

CPU

network

CPU

network

Mem

network

CPU

network

CPU

network

SSD

network
CPU

network

CPU

network

Server

network

Datacenter

Network

CPUCPUCPU
CPUCPUMem CPUCPUSSD

CPUCPUServer

Datacenter

Network

Network

Pool

Network

PoolDisaggregate

Consolidate

Disaggregate Network Modules from Endpoints and
Consolidate Them Into a Network Resource Pool

Providing Network-as-a-Service 75

Network Disaggregation and Consolidation
• Definition

• Disaggregate Network Tasks (NT) from individual endpoints

• Consolidate them into a Network Resource Pool

• Network Tasks

• Transports (e.g., TCP, RoCE)

• Classical network functions (e.g., firewall, NAT)

• Advanced in-network computation (e.g., KVS)

• Link between endpoints and pool ()

• A reliable data link (e.g., reliable Ethernet, PCIe)

• Small buffer and simple logic

Network 
Pool

CPUCPUCPU

CPUCPUMem CPUCPUSSD

CPUCPUServer

 Network

Network

Pool

Network

Pool

76

Should we disaggregate network?

77

Benefits of Network Disaggregation

• We discover three main benefits

• Avoids implementing net hw/sw at each device

• Enable rack to host a large number of disaggregated devices

• Provision for the peak of aggregated usage

CPUCPUCPU
CPUCPUMem CPUCPUSSD

CPUCPUServer

Network

Network

Pool

Network

Pool

78

Provision for the peak resource usage
• Sum-of-peak v.s. Peak-of-sum

• sum-of-peak: provision for each host’s max usage

• peak-of-sum: provision for the max of aggregated resource

• Our finding

• Consolidation uses 2 orders of 
magnitude fewer resources than 
no consolidation

Facebook trace, SIGCOMM’15

Alibaba trace, released on GitHub early 202079

Outline
• Network Disaggregation and Consolidation

• Alternative Solutions

• SuperNIC

• Overview

• Board Architecture

• Fast and Fair Packet Scheduling

• Distributed SuperNIC

• Case Studies and Results

• Conclusion

80

CPUCPUCPU

CPUCPUMem CPUCPUSSD

CPUCPUServer

Datacenter

Network

Network 
Pool

Network 
Pool

SuperNIC High-Level Architecture

81

CPUCPUCPU

CPUCPUMem

CPUCPUServer

Datacenter

Network

Network

Pool

sNIC sNIC

sNICsNIC

SuperNIC is an ideal way to realize
the Network Pool for Disaggregated Datacenter

ToR Switch

sNIC sNIC

Server
sNIC

MemMem

• SuperNIC is connected to ToR switch
• SuperNICs are connected via ring or mesh
• SuperNIC connects to a set of endpoints

SuperNIC High-Level Architecture

N
et

w
or

k
Po

ol

sNIC

MemCPU

Datacenter

Network

CPUCPUSSD

82

Outline
• Network Disaggregation and Consolidation

• Alternative Solutions

• SuperNIC

• Overview

• Board Architecture

• Packet Scheduling

• Distributed SuperNIC

• Case Studies and Results

• Conclusion

83

SuperNIC Board Architecture
• Key Goals/Questions

• How to efficiently and safely consolidate tasks?

• How to ensure fairness among tasks?

• How to design applications for sNIC?

• SuperNIC main features

• Data Plane: Handle packets at line rate with low latency

• Control Plane: Multiplex multi-tenant network tasks

• Mgmt Plane: Adapt to dynamic workload change

Fa
st

Da

ta
 P

at
h

Flexible

Control Path

Monitoring &
Management

Network

Task

Network

TaskNT

DAG

Network

Task

Network

TaskNT

DAGDAG
DAGDAGDAG

SuperNIC Board

84

Central Scheduler

Reorder

Buffer

Credit

Store

Pe
r R

eg
io

n
Q

ue
ue

Header

Store

SuperNIC Board Architecture

Parser

MAT

DAGDAGDAG

Parser

MAT

DAGDAGDAG

Parser

MAT

DAGDAGDAG

SoftCoreSoftCoreSoftCore

On-chip (BRAM)
Packet Store

Virtual 
Memory

page

table

NT1 NT2 NT6

….

On-board
DRAM

NT1

State

NT2

State

NT6

State

Extended

Packet Store

….
System

State

PHY 
MAC
PHY 
MAC

PHY MAC
RX

PHY 
MAC
PHY 
MAC

PHY MAC
TX

LinkLinkLink SuperNIC

Core

User

NT

Region

Memory

User

NT

Region

User

NT

Region
CPUCPU

SuperNIC board design has
a fast data plane with

safe/fair sharing,
a control & mgmt plane with

great flexibility.

• PHY & MAC (Ethernet)
• SoftCore for Monitoring and Management
• Parsers w/ User DAG (Core)
• Central Scheduler (Core)
• Virtual Memory Subsystem (Core)
• Network Task Regions run user code

ASIC

FPGA or hardened as ASIC

FPGA

In Real DeploymentPrototype on FPGA

C
ro

ss
ba

r

NetwNetwNT5 NetwNetwNT6

NetwNetwNT4

NetwNetwNT1 NetwNetwNT2 NetwNetwNT3

100Gbps

100Gbps

100Gbps

SuperNIC core uses 10% chip area
 User Region occupies the rest 90%

85

Outline
• Network Disaggregation and Consolidation

• Alternative Solutions

• SuperNIC

• Overview

• Board Architecture

• Fast and Fair Packet Scheduling

• Distributed SuperNIC

• Case Studies and Results

• Conclusion

86

Case Study on Disaggregated Devices

KVS Logic KVS Logic

Transport

NF

Caching

NT

Clio: A Hardware-Software Co-Designed Disaggregated Memory System, ASPLOS’22

Replication

NT

SuperNIC

Clio FPGA Boards

Transport

KVS Logic

DRAM

Transport

KVS Logic

DRAM

Virtual Mem Virtual Mem

NT3KV
Client

KV
Client

KV
Client

NT3KV
Client

KV
Client

KV
Client

Switch

DRAM DRAM

Virtual Mem Virtual Mem

Clio FPGA Boards

Clio is an FPGA-based disaggregated memory system
1. RDMA-alike Transport
2. Virtual Memory Subsystem
3. Key Value Store

We take 3 steps to integrate it with SuperNIC
1. Consolidate transport ==> Reduce CapEx/OpEx
2. Add Caching NT ==> Improve Latency
3. Add Replication NT ==> Improve distributed xact

Takeaway
SuperNIC helps reduce CapEx and OpEx.
It adds one extra hop, but helps building

distributed applications!

87

Results
• FPGA Utilization

• Our shell uses roughly 10% chip area

• Leave most of the on-board logic/memory to application logic

• Cost of an extra hop

• sNIC core only has roughly 100-200 ns latency cost per packet (~1us total)

• All units are pipelined and able to achieve 100Gbps line rate

• Performance and Cost Saving

• Achieve 56% CapEx and OpEx saving with only 4% perf overhead 
compared to a normal SmartNIC-based deployment model

• More results in the paper https://arxiv.org/pdf/2109.07744.pdf

88

https://arxiv.org/pdf/2109.07744.pdf

SuperNIC Summary

• Network can be disaggregated and consolidated

• Everything above data link layer can potentially be disaggregated

• Network pool provides Network-as-a-Service

• SuperNIC is an ideal way to realize the pool

• SuperNIC offers high-performance, isolated, and fair consolidation solutions

CPUCPUCPU
CPUCPUMem

CPUCPUServer

Net

Network

Pool

sNIC sNIC

sNICsNIC

CPUCPUSSD

89

Outline
• Background on Resource Disaggregation

• Projects Conducted

• Logical Disaggregation [Hotpot, SoCC’17]

• Physical Disaggregation [LegoOS, OSDI’18]

• Hybrid Disaggregation [Clio, ASPLOS’22]

• Network Disaggregation [SuperNIC, arXiv’21, under submission]

• Future Work

• Conclusion

90

Future Work

91

Applications Hardware

Advanced
Compilers and PL Frameworks

1 End-to-End Security
and Confidential Computing

2

CPUCPUCPU
CPUCPUMem CPUCPUSSD

CPUCPUGPU

DC

Network

Network
Network

s

s

s

3 Disaggregation-Native
Application and Data Structures

CPUCPUCPU CPUCPUMem CPUCPUSSD Network
Network
Network

Serverless Data

Structures

Applications

Conclusion
• Disaggregation holds its promises on manageability, cost, and perf

• Disaggregation benefits “overlooked” systems/resources

• Hardware-software co-design benefits disaggregated devices

• Many open problems remained, call for more chefs!

92

Don’t adventures ever have an end?
I suppose not.

Someone else always has to carry on the story.
– The Fellowship of the Ring

Acknowledgements

93

Thank you!

94

