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Abstract—Memory disaggregation is a promising direction to
mitigate memory contention in datacenters. To make memory
disaggregation practical, prior efforts expose remote memory
to applications transparently via virtual memory subsystem’s
swapping interface. However, due to the semantic gap between
OS and applications – OS cannot know the memory accessing
sequences of an application but via page faults. This approach
has two limitations. First, it learns little from page faults’
access history, which leads to sub-optimal prefetching predictions.
Second, a page fault can still occur even if there is a prefetch-hit
which leads to a large kernel overhead.

To address such limitations, our key insight is to decouple the
address capturing from page faults by collecting full memory
access traces in the memory controller. Using this idea, we build
HoPP – a hardware-software co-designed prefetching framework.
HoPP adds hardware modules to the memory controller to feed
sufficient hot pages to OS in real-time, which has three benefits
in HoPP’s software design: 1) it improves existing prefetching
algorithms with simple revamps, also offers more insights to
build better policies; 2) the prefetch algorithm can run as a
separate data path alongside the normal remote data path via
page faults, potentially hiding the swap latency from applications,
and enabling fine-grained control over prefetching behaviors;
3) the prefetch-hit overhead can be eliminated by early page
table entry (PTE) injection, i.e., inject PTE for the prefetched
page as soon as it returns. We implemented a proof-of-concept
prototype using commodity servers along with a hardware-
based memory tracking tool called HMTT to emulate a modified
memory controller. Results show that compared to Fastswap and
Leap, HoPP-optimized prefetching algorithm achieves over 90%
accuracy and coverage, which leads to up to 59% completion
time improvement for various datacenter applications.

I. INTRODUCTION

Datacenter in-memory applications such as big data analyt-
ics and caching have an increasing demand to access large
amounts of memory [2], [18], [19], [62]. Their performances
degrade when their working set fail to fit into local memory.
Unfortunately, servers are facing memory capacity walls due
to pin and power limitations [36], [50]. Meanwhile the average
memory utilization in datacenters is low (e.g., about 60% for
Google and Alibaba clusters [37], [63]), abundant idle memory
is beyond the reach of applications that desperately need it.

Memory disaggregation bridges this gap by organizing
memory as an independent resource pool and making it
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available to applications. Disaggregation mitigates memory
provisioning inefficiencies and improves resource utilization
in datacenters [16], [22], [27], [34], [36], [55].

To make memory disaggregation practical, one important
category of prior works relies on virtual memory subsystem
(VMS) for remote memory swapping over high-speed network
such as RDMA [7], [22], [34], [38], [49] – kernel-based
remote system. Although this approach enables applications
to transparently, without code changes, use remote memory,
it relies on the page fault handler for remote accessing, which
is synchronous and costly by adding swap overhead into the
application’s critical path. Despite recent efforts, the data path
is still slow, e.g., it takes 9µs for Fastswap [7], a recent
kernel-based remote system, to read a remote page, which
significantly degrades application performances.

Ideally, a remote system should minimize the remote mem-
ory access as much as possible so that the overhead from
page faults is minimized. Therefore, along with the faulting
page, the recent systems like Leap [38] and Fastswap [7] also
prefetch pages into the swapcache. If they can be hit, less time
is spent on the critical path. Unfortunately, their prefetchings
still suffer a fundamental limitation: the semantic gap between
OS and applications – OS cannot know where (which memory
address) an application is running but via page faults. First,
this makes prefetch algorithms trap into a paradox: naturally,
we want fewer page faults. However, a prefetch algorithm then
has limited memory access data to train on and eventually
makes sub-optimal predictions (§II-B). On the other hand,
obtaining sufficient knowledge of memory accesses to train
prefetch algorithms means more page fault occurrences (e.g.,
by setting more page fault points for profiling), making the
application performance even worse. Second, even if their
prefetched pages are hit eventually, we found that the prefetch-
hit in swapcache is a synchronous process, resulting in a large
kernel overhead (§II-C).

Recently, there are another three categories of remote mem-
ory systems proposed. However, 1) application-integrated sys-
tems sacrifices application transparency for better performance
via explicit user control on data movement and prefetch-
ing [52]. 2) Language-runtime managed systems integrate re-
mote systems into a user space language runtime or application
kernel. But they are limited to a few languages [66]. 3) Bus-



extended systems rely on emerging coherent interconnects like
CXL-based platforms [1] for transparent remote accesses [11],
[33]. However, extending bus interface is complex, requiring
redesign existing coherence protocols [41], [47]. More impor-
tantly, they cannot use local DRAM for caching, which is
critical for performance. Thus, for each hot data access, they
have to access it remotely [11].

In this work, we strike a balance between these four cate-
gories with minimal hardware change, i.e., not only retaining
application transparency and high-speed local DRAM cache,
but also achieving efficient prefetching. The key insight is that
we can decouple the memory access address generation from
the page fault, by collecting real time memory access trace
in memory controller (MC) and make it available to OS. As
a result, a prefetch algorithm has an abundant supply of real-
time addresses to make better predictions, independent from
how frequently page faults occur.

We propose HoPP, a Hardware-software co-designed Page
Prefetching framework, which acts as a separate data plane
complementing existing kernel-based remote systems such
as Fastswap. Specifically, 1⃝ in hardware, we introduce two
hardware modules in MC, i.e., hot page detection and reverse
page table cache. They take the Last Level Cache (LLC)
misses as input and output a sequence of ordered, real-time
page-based memory trace to HoPP software. This key factor
enables the following major designs in software: 2⃝ HoPP
can run different prefetch algorithms according to observed
memory access patterns. We validate that full memory trace
not only improves the existing state-of-the-art page prefetching
algorithm (i.e., majority-based prefetching in Leap [38]), but
also offers more insights on access patterns, which inspires us
to design a more sophisticated prefetching design (Adaptive
Three-tier Prefetching) for better performance. 3⃝ Real-time
memory trace allows HoPP to run prefetching asynchronously
as a separate data path, alongside the conventional data path
of remote accesses via page fault. It starts to prefetch as soon
as the decisions are made, potentially hiding the swap latency
from applications. 4⃝ HoPP injects PTEs for prefetched pages
once they return, before been hit, and can know whether they
are hit/missed from the memory trace. This greatly eliminates
the overhead of prefetch-hit existed in kernel-based remote
systems. In addition, we charge the prefetched pages to the
cgroup of the application while Fastswap and Leap did not
account for.

Combining 1⃝ to 4⃝, it is possible for applications to
potentially experience near 0 page faults, and achieve a near-
local performance, whenever the prefetching accuracy and
coverage are high (e.g., over 90%) (§VI). 5⃝ The remote
swap latency is volatile, which is affected by remote memory
access latency including application memory access speed and
network delay. The asynchronous data path in 3⃝ enables fine-
grained control and scheduling on prefethcing, thus can timely
and dynamically react to latency volatility. HoPP takes a first
step to have a policy engine with two knobs (prefetching
intensity and offset) for tweaking prefetch aggressiveness and
timeliness.

Systems Trans. Generality Performance
DRAM

Cache

Light

Data Path

Efficient

Prefetch

App-Integrated [52], [53] ✕ ✕ ✓ ✓ ✓

Language-Runtime [66] ✓ ✕ ✓ ✕ ✓

Bus-Extended [33] ✓ ✓ ✕ ✓ ✓

Kernel Others [7], [38] ✓ ✓ ✓ ✕ ✕
HoPP ✓ ✓ ✓ ✓ ✓

TABLE I
Disaggregated Memory System Comparisons.

We implemented a proof-of-concept prototype based on a
commodity X86 platform, with an Hardware-based memory
tracking tool called HMTT [23], to emulate the trace collection
in MC. We then emulate the proposed hardware modules
in software, and also implement them in Verilog to verify
their feasibility. As mentioned, HoPP can be a complement
to existing kernel-based systems. We run HoPP’s software in
a separate data plane along with Fastswap or Leap, and only
use it as a backend to access remote data via RDMA.

We evaluate HoPP with 15 real-world large in-memory ap-
plications including GraphX, K-means, and Bayes running on
top of Spark, and C-based applications such as K-means, HPL,
NPB, Quicksort (§VI). Our results indicate HoPP can predict
prefetching with higher accuracy and coverage. When half of
their working set is disaggregated, applications running on top
of HoPP only incur 3.53% slowdown with 99.5% coverage and
99.9% accuracy, a 59% improvement over Fastswap and Leap
(§VI). In summary, we make the following contributions:

• We propose hot page detection and reverse page table
cache in MC, which delivers real-time hot page access
trace to OS with little cost.

• We validate that full memory trace not only improves the
state-of-the-art prefetcher, but also enables us to propose a
new prefetching design, Adaptive Three-tier Prefetching.
This key factor also inspires a set of different designs
on prefetching like asynchronous prefetching, early PTE
injection and policy engine, in software.

• We implemented a proof-of-concept prototype based on a
commodity X86 platform, with an hardware-based mem-
ory tracking tool (HMTT), and evaluated its performance
gain with real-world large in-memory applications.

II. BACKGROUND AND MOTIVATIONS

A. Remote Memory System Design Spectrum
This section and Table I present a comparison among four

major approaches to build such a system.
Kernel-based systems. They rely on the virtual memory

subsystem [7], [11], [38] for transparent access to remote
memory. As a result, applications can run on them as is.
But transparency is not free. Page fault incurs high latency,
exceeding network latency, which makes the software stack
a bottleneck for accessing remote memory. The following is
a detailed breakdown of swap operations triggered by a page
fault in most kernel-based systems:
(1) Whenever a page is missed in DRAM, the present bit of
the PTE is 0, thus a page fault occurs, resulting a context
swtich – about 0.3µs.
(2) Kernel traverses page table and locates the PTE – 0.6µs.



(3) Query swapcache for the missing page. If not found,
allocate a new local page and swap entry, insert them to the
swapcache – about 0.4 µs.
(4) Transmit 4 KB page over RDMA – about 4 µs.
(5) Memory reclaim [3], [4] is triggered when the physical
memory is insufficient (since Linux v5.8, this is completed in
advance). One reclaim operation uses more than 300 µs to
reclaim multiple batches of pages, – about 2 to 5 µs per page.
(6) Establish PTE and return to user space – about 1 µs.

The worst case latency takes 8.3 to 11.3 µs on critical path.
Prefetching is an effective way to amortize this overhead.
It reads extra pages along with the missing page into the
swapcache. Future page faults on these pages will result in
swapcache hits, hence avoid the costly network transmission
(step 4). We call them prefetch-hit, whose latencies are 4.3 to
7.3 µs. Since Linux v5.8, step 5 is completed before issuing
prefetching. Its overhead is reduced to 2.3µs now.

Application-integrated systems. These systems require
applications to use a new set of primitives to access remote
memory [52]–[54], such as specialized APIs and data struc-
tures [6], [12], [13], [40], [42], [64], or make annotations
in source code [16], [28], [29], [48], [51]. Such primitives
operate on objects and expose their semantics (e.g., remotable)
to allow applications to explicitly control data movement or
prefetch efficiently. They sacrifice transparency and generality
for better performance by replacing VMS with a userspace
lightweight data path and giving control back to users.

Language-runtime managed systems. This approach
changes the memory management components of the language
runtime, such as JVM’s garbage collection [66], and facilitates
efficient prefetching [65], to make them more remote-memory
friendly. Nonetheless, they are limited specific languages (e.g.,
users of JVM), hence has limited generality.

Bus extension-based systems. This approach relies on
coherent interconnects for remote accessing [11], [17], [33].
Though it is expected to achieve transparency, generality and
high performance altogether and attract great attention [20],
[33]. However, it has two limitations: 1) it fails to leverage
local DRAM caching to mitigate the performance loss from
using remote memory; 2) As synchronous load/store remote
access can go through multiple hops over fabrics, lasting for
a few µs, every outstanding memory access needs to hold
at least one hardware resource until the operation is com-
pleted [67]. Thus, datacenter operators prefer this approach
(e.g., CXL) for memory disaggregation within a rack [33].

HoPP. HoPP seeks to leverage the benefits of the above
four categories. First, it takes the kernel-based system as the
basis model thus achieves the design goals of transparency
and generality, and leverages local DRAM cache for remote
access, which are not easy or even possible for the other
three to achieve at once. For high performance achieved by
application-integrated systems (e.g., AIFM), we seek a novel
hardware-software co-design to mitigate the fundamental lim-
itations in current kernel-based systems – limited knowledge
of memory access history and large overhead of prefetch-hit.

A1

A2

Z1Remote Memory Access Local Memory Access  Irregular access 

A1 B1 A3 A4

A2

B5 A5 A6 B3 Z1 A7 A8
t1 t3 t4 t5 t6 t8 t9t2 t7 t10 t11 t12

Fig. 1. A motivating example with two streams intertwine, stream A and B
have a stride of 2 and 1 respectively. At t5, Leap cannot derive the dominate
stride for stream A due to 1⃝ and 2⃝. The same reason for stream B at t9.
Leap cannot derive the stride for stream A at t12 due to interference 3⃝.

B. Limited Knowledge of Memory Access History
Existing prefetching algorithms in kernel-based disaggre-

gated systems rely on the missing page history from page
faults to identify page streams. A page stream is a sequence of
page accesses with a regular stride. However, without memory
access to local DRAM, they fail to identify the page streams.
1⃝ Page faults produce the missing page addresses, which is
coarse-grained and infrequent. Thus, a page stream detection
will be interrupted and delayed with missing pages only,
failing to determine a stable page stride efficiently.
2⃝ In highly concurrent scenarios, which is common for large
in-memory applications, multiple page streams are accessed
alternatively. It further confuses the stride identification with
missing pages only, as pages can be from different streams.
3⃝ They fail to filter out interference pages that do not belong
to any page stream, but falsely take them account into the page
streams identification.

Figure 1 showcases an example on how above three limi-
tations impact majority-based prefetching with window 4, the
state-of-the-art page prefetcher adopted in Leap [38]. Simi-
larly, strict-pattern prefetcher (e.g., Read-ahead prefetching in
Fastswap [7] and Infiniswap [22], VMA-based prefetcher in
Linux 5.4) also suffers from the limitations. Intuitively, the
above issues can be addressed if full page accesses including
both local and remote accesses are provided. We revamp the
majority-based prefetcher to utilize full page accesses with two
techniques (see details in §III-D): Pages clustering: we group
pages into different streams based on the fact that streams
are separated in different address subspaces, e.g., a new page
belongs to a stream if its VPN is within a predefined distance
(e.g., 64) from the previously received L pages of that stream;
Large window: with abundant page access history, each stream
adopts a larger window (L) to obtain the dominant stride,
which is more robust to interference pages.

We implemented the above prefetch algorithm in HoPP
which has full memory trace supply, and compared its
prefetching accuracy/coverage to Leap’s with microbench-
marks and real applications (detailed setup in (§V)). The result
shows that, with full memory access the algorithm improves
prefetch accuracy and coverage by 10.6% and by 13.9%,
respectively. However, the study on the full memory traces
of different applications captured offline, e.g., HPL and NPB-
MG (see §VI-D), strongly suggests that there exist another two
types of stream patterns – ladder streams and ripple streams,
as shown in Figure 2 and 3, respectively. Thus, the above
prefetch algorithm does not fully exploit the full memory trace.
In specific, the stream pattern it tries to identify is simple
stream, i.e., a consecutive page accesses with a fixed stride,
but it assumes there exists only one simple stream within
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Fig. 2. Ladder streams: Access a1
to a4 forms a ladder tread, and a4
to a5 forms a ladder rise.
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Fig. 3. Ripple streams: Access a1
to a5 forms a ripple stream.

a predefined address subspace, which is strong. In contrast,
both ladder and ripple streams are intrinsically formed by
simple streams (red lines), their accesses are within a tiny
address space (y-axis), and the consecutive page accesses
can cross multiple streams in time space (yellow lines).
Thus, they cannot be separated with page clustering. Ladder
streams have a repetitive spatial access pattern (yellow line
in Figure 2), which includes a series of concentrated accesses
across streams (ladder tread) followed by a larger, stable stride
(ladder rise), e.g., they are common in matrix multiplication’s
footprint. Ripple streams are a set of special simple streams
with stride 1, which are distorted by irregular across-stream
and out-of-order accesses.

The existence of different patterns underscores the necessity
of full memory trace. As we will show in §III-D, we further
exploit the full memory trace, and propose a set of prefetch
algorithms that identifies the above three patterns efficiently.

C. Large Overhead of Prefetch-hit.
As mentioned in §II-A, efficient prefetching reduces the

overhead of costly remote data path (8.3 to 11.3µs) into the
overhead of prefetch-hit (2.3µs), which is at least 23 times
higher than that of a DRAM-hit (0.1µs). Intuitively, one can
eliminate the overhead by simply setting PTEs for prefetched
pages once they return – early PTE injection, which is adopted
in a kernel-based page prefetching [9] (we call it Depth-N).
Although it can turn any prefetch-hit into a DRAM-hit, early
PTE injection makes kernel-based remote systems trap into a
paradox:
❶⃝ Limited prefetching flexibility. Once the PTE for a
prefetched page is setup, Depth-N cannot perceive whether it
is hit, thus it cannot adjust the algorithm but using a fixed N
e.g., 32, while Leap and Fastswap can obtain the prefetching
accuracy/coverage from page faults in Swapcache.
❷⃝ Less knowledge of memory accesses. DRAM-hit cannot
trigger any page faults. For systems relying on page faults for
prefething, they have less knowledge on the application mem-
ory access pattern, further degrading prefetching performance.
❸⃝ High cost of inaccurate prefetches. If prefetching is error-
prone, PTEs are set for inaccurate prefetches, it would be more
difficult to evict them from DRAM, as kernel put it at the very
beginning of the LRU-based page list.

As will show in §VI-C, the above problems can offset the
performance gain from early PTE injection in Depth-N. As a
result, Depth-N performs worse than Fastswap in some cases.

Full memory access trace enables another way to tell whether
the prefetches are hit or missed thus resolving above issues.

D. Design Space
The fundamental cause of the above two limitations is

that OS cannot know where (which memory address) an
application is running until page faults. This motivates us to
bridge the gap by decoupling the memory address generation
from page faults and exploring a mechanism to collect rich
memory trace for prefetching.

Memory trace collection. Previous works collect memory
trace with two approaches. 1) Software approaches: The
remote memory systems in cloud vendors traverse the access
bits of all PTEs periodically, thus tracking the access counts of
all pages over a larger period [32], [68]. Based on the access
count, they detect hot pages for data migration. Thermostat [5]
fires a page fault for a TLB miss and tracks the page’s
access count according to its misses, which inevitably slows
down the application. 2) Hardware approaches: They use
cacheline-based accesses from hardware components for hot
page detection [8], [39], e.g., MMU, MC, etc., and transfer
them to OS by setting the PTE’s reserved bits. To collect hot
pages, the OS also needs to continuously traverse all PTEs to
check and reset reserved bits periodically. Similar to software
approaches, this memory trace collection is a) non-real-time
– it is time-consuming to traverse the access bits of a large
footprint, e.g., if the average time to check one access bit is
20ns, the total time to traverse 10GB footprint is 52ms; b)
costly – to obtain access count continuously, OS has to check
access bits and then reset them periodically. c) out-of-order
– it reports a collection of the accessed pages without time
order. d) single-bit – it only tells whether the page is hot.

In contrast, kernel-based prefetching requires memory trace
to be 1) ordered – prefetched pages should follow the same
order; 2) real-time – prefetching future pages based on current
accessing page improves prefetch coverage (§VI), and 3)
full – it requires all addresses and timestamps of the page
access history to identify access patterns, PID to differentiate
applications, shared page flag, etc.(§III-C). Thus, the previous
trace collections cannot be used for kernel-based prefetching
but data migration which operates in a coarse-grained manner
and requires 1-bit information only [5], [8], [32], [39], [68].

Why Memory Controller (MC)? The next question is
where to collect and process such trace for prefetching. 1)
Memory Management Unit (MMU): Since virtual addresses
can be collected in MMU, we can directly use them to identify
access patterns and determine the pages to prefetch. However,
there are four disadvantages. a) MMU sees L1 accesses,
which is two orders of magnitude higher than LLC miss
(e.g., 180 times for Spark-Graph-BFS). As MMU cannot tell
whether the access is in LLC, it will mistakenly consider any
page or access pattern with spatial locality inside LLC as
a potential stream, which increases hardware complexity for
stream identifications and energy cost. b) For each prefetching
page, MMU needs to check the present bit of its PTE to ensure
it is not in DRAM. This causes the other PTEs to be evicted
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from TLB and page table cache at the same core. c) The
number of MMUs is much more than MCs, given the in-core
resource is more precious, modifying MC is cost-effective. d)
When a process migrates between cores, or a page stream
from multiple cores, using accesses from a single core cannot
identify a complete page stream. 2) MC: We choose MC as it
processes LLC-misses, which automatically reduces the access
volume by filtering out those in-LLC accesses. Kernel-based
prefetching cares about large page streams which cannot be
cached in DRAM, knowing rich LLC-misses is sufficient to
identify large streams [8]. Second, MC belongs to uncore,
which is easy to modify than cores and has the least hardware
cost. The tradeoff is that we need a mechanism to translate
physical-addressed pages to virtual-addressed ones (see PPN-
to-VPN mappings in §III-C). 3) LLC and L2 cache: LLC
also sees LLC-misses, and L2 cache sees more L2-misses.
Similar to MMU, the number of LLC banks and L2 cache is
much more than MCs, which requires more hardware changes.
Additionally, they also need to do PPN-to-VPN mappings.

Full real-time memory access history from MC opens a new
design space for kernel-based remote systems in software:
✦ It offers more input knowledge to design a more sophisti-
cated prefetch algorithm with better performance (§III-D);
✦ Prefetching can be designed as a separate data path along-
side the conventional data path of remote accesses via page
faults, which allows fine-grained control and scheduling of
prefetching, and potentially hides the swap latency (§III-E).
✦ Maximizing the benefit of early PTE injection without
hurting the prefetching flexibility by calculating the actual
prefetching accuracy/ coverage with memory trace (§III-F).

III. HOPP DESIGN

A. Overview
HoPP is a hardware and software co-designed system. We

implement a hot page detection (§III-B) and a reverse page
table cache (§III-C) in MC. The software part consists of a
training module (§III-D), a policy engine (§III-E) and an exe-
cution engine (§III-F). Figure 4 presents HoPP’s architecture.
HoPP’s input is raw memory accesses originated from last-

level cache misses. The hot page detection module extracts hot
pages from the trace using a small cache. It then forwards the
physical address, i.e., physical page number (PPN), of every
hot page to the reverse page table cache (step 1). The cache

PPN Access Number Send Bit LRU Bit
8001 8 1 1
9001 7 0 1

Hot Page Detected7340 8 0 1
No Enough Accesses

 Repeated detection 

Fig. 5. Hot Page Detection Table.

in turn maps the PPN of a hot page into its process ID (PID)
and virtual page number (VPN), and saves them to a reserved
location in DRAM (step 2). Meanwhile, the prefetch training
framework will soon use those abundant hot pages to make
prefetch decisions (step 3). The policy engine finalizes what
pages (including PID and VPN) to fetch and when to fetch
them. It then instructs the execution engine to read data from
remote using RDMA and to establish page tables (step 4).

B. Hot Page Detection
MC tracks cacheline-based LLC misses. Simply feeding all

the raw trace to OS would consume excessive memory band-
width, and overwhelm HoPP if the software processes every
single LLC miss. Additionally, the software needs to filter out
interference pages that do not belong to any stream (§III-D),
increasing the software complexity and computing resource.
On the other hand, we want to feed as much memory trace
as possible to closely resemble the real-time page accesses.
To output memory traces in real-time without consuming
excessive memory bandwidth, we add a lightweight Hot Page
Detection (HPD) module in MC to convert cacheline-based
access into important or hot page-level access trace.

We omit WRITEs but only account for READs for two
reasons. 1) Any READ-miss operation immediately generates
a READ trace, while a WRITE-miss operation will first
generate a READ trace and write the data to the CPU cache,
which has a time lag to be evicted and generates a WRITE
trace. 2) The RDMA NIC uses DMA write to fetch the pages
into local memory from remote, resulting in numerous write
accesses. There is no easy way for us to differentiate them
from the normal accesses generated by applications.

To identify hot pages, a direct approach is to track the
access counts of all physical pages, and then find the ones
have been accessed N times within a time window (e.g.,
100µs). However, this approach requires non-trivial hardware
resources which cannot fit into an MC. In response, we build
a small hot page detection table (HPD table) to only track the
access counts of M pages. In Figure 5, we organize the table
as a 16-way 4-set associative cache with LRU replacement
(M = 64). Each entry in the table records the PPN, number of
read accesses, a send bit indicates the entry was identified as a
hot page and being extracted, and an LRU bit for replacement.
The lowest 2 bits of PPN are used as set index.

We now can describe the whole flow in detail. When the
HPD receives a memory access, we convert the cacheline-
aligned address into PPN, and locate the table entry using
PPN. If not found, we insert it. If found, we check whether the
send bit is asserted, if so, we drop this access. Otherwise, we
increment the number of accesses. Once the accesses exceeds
the threshold N , we extract the PPN and mark it as a hot



N 2 4 8 16 32
K-means 1.72% 1.63% 1.59% 1.56% 1.54%
PageRank 11.72% 4.45% 1.55% 1.07% 0.84%

CC 5.18% 2.16% 1.48% 1.19% 1.02%
LP 3.96% 2.42% 1.84% 1.47% 1.26%

BFS 4.01% 2.36% 1.77% 1.44% 1.23%
TABLE II

THE RATIO BETWEEN HOT PAGES IDENTIFIED AND MEMORY ACCESSES.

      DRAM

Reverse Page Table(RPT)

Memory Controller RPT Cache

......

huge page flag

shared page flag

RPT entry PID~16 bits

VPN~40 bits

Fig. 6. The only RPT copy resides in DRAM. MC has a 64 KB RPT cache.

page. The more sets in HPD table, the more physical pages
can be tracked concurrently. We use four sets, that is, up to
64 different physical pages can be tracked at the same time.

The impact of threshold N. A 4KB page contains 64
cache blocks, thus N ranges from 1 to 64. If N is too small,
e.g., N = 2, more hot pages are extracted, and the memory
trace extracted is closer to the application’s real-time page
accesses. However, it includes more repeated extraction of
the same page, causing more memory bandwidth. Table II
shows that when N < 8, the number of hot pages extracted
increases significantly, resulting in more RPT queries (§III-C),
e.g., PageRank, thus the application performance drops (3%
for N = 4). If N is too large, e.g., N = 32, a hot page can be
evicted before being accessed N times, and the memory trace
extracted is more coarse-grained, which affects the prefetch
coverage and application performance. To achieve the best
trade-off between memory bandwidth consumption and timely
pages extraction, we chose N = 8 as default.

The impact of multiple memory channels. When multiple
channels are interleaved, different cachelines of the same
physical page reside in distinct channels. In this case, we
need to reduce N . Although this might lead to repeated hot
page extractions, we could de-duplicate them in the prefetch
training framework (§III-D). When multiple channels are not
interleaved, different hot pages are extracted from different
MCs. We can merge them in the prefetch training framework.

C. Reverse Page Table

MC tracks physical addresses and is impossible to deter-
mine which physical address belongs to which process. In
addition, the cross-page access pattern exists in virtual address
space [46]. Thus, we build Reverse Page Table (RPT) to map
PPN back to PID (i.e., application/process) and VPN. Because
it is difficult to store all RPT entries in MC, RPT is stored in a
reserved DRAM area. To reduce CPU cache pollution caused
by frequent RPT maintenance (covered below), we set RPT
to be uncached. As shown in Figure 6, each RPT entry has a
PID (16 bits), a VPN (40 bits), a shared page flag (1 bit), and
a huge page flag (2 bits), total 64 bits. Even with the 4KB
page, the whole RPT consumes only 0.17% of the physical
memory, e.g., 64GB local memory requires a 112MB RPT.

RPT Cache. To reduce the extra memory bandwidth con-
sumed by frequent accesses to RPT in DRAM, we add a small

Size(KB) 1 2 4 8 16 32 64
K-means 0.92 0.93 0.94 0.96 0.98 0.996 0.998
PgRank 0.85 0.86 0.89 0.92 0.97 0.992 0.997

TABLE III
RPT CACHE HIT RATE WHEN VARYING ITS CACHE SIZE.

PID VPN_history LRU Bit
231 10 12 14 16 18 20 22 1
231 121 145 171 131 79 132 153 1

Stride Detect

230 1 3 5 1 No Enough Pages
No Stride

stride_history
2 2 2 2 2 2
24 26 -40 -52 53 21
2 2

Fig. 7. Stream Training Table . A stream is identified when the VPN history
is full while the dominant stride has occurred more than L/2 times.

RPT cache in MC. All operations made to RPT interact with
the cache only, thus there is no need to maintain consistency
between the cache and the RPT in DRAM. In other words, all
RPT reads and writes pass through this RPT cache inside MC,
which ensures consistency. We design RPT cache in 16-way,
which takes the PPN emitted from HPD (§III-B) as input and
outputs PID+VPN combo, Then, HoPP writes the combo into
another reserved DRAM area (step 2 in Figure 4).

RPT Maintenance. When HoPP first starts, it traverses all
existing page tables, builds the mappings from PPN to the
PID+VPN combo, and then saves the mappings to the RPT in
memory. In addition, HoPP installs several hooks into kernel
virtual memory subsystem functions. Whenever kernel adds,
removes, or updates a PTE, HoPP will be notified and will
update the RPT cache accordingly. RPT in memory is updated
lazily only when RPT cache writes back dirty entries (§V).
Table III evaluates the RPT cache hit rate with various sizes
using offline memory trace. With a 64 KB cache, only 0.3%
requests miss RPT cache. We see a diminishing return as we
further double the cache size (less than 0.1%). Thus, we use
64 KB as our default RPT cache size. The RPT cache hit rate
is high because when a page is accessed, it is likely that page
was just fetched from remote memory and its page table entry
has been established, so its RPT entry exists in the RPT cache.

Shared Page and Huge Page Support. HoPP supports
page sharing and huge pages (e.g., 2 MB and 1 GB). As the
RPT is indexed by PPN, we support huge pages using the
the same hardware infrastructure. Each RPT entry has a huge
page flag and a shared page flag. They are not consumed by
the RPT module, rather, they are forwarded to the hot page
area in memory. It is up to the software to use this information
for better predictions (§III-D).

D. Prefetch Training Framework

Prefetch training framework in software can flexible run
and update different prefetch algorithms. Rich memory trace
from MC enables more vision on access patterns, i.e., simple
stream, ladder and ripple (§II-B), thus offers a larger design
space to design a more sophisticated prefetch algorithm. We
propose Adaptive Three-Tier Prefetching design. Each tier
employs a prefetch algorithm to identify one of the patterns
and prefetch accordingly. Our proposal is just one solution in a
large design space, advanced solutions like machine learning-
based ones [58] can also be enabled by full trace.

1) Framework: The framework is responsible to group hot
pages into page streams. Then, a prefetch algorithm is applied
to look for repetitive patterns inside that stream for prediction.



Algorithm 1 Ladder-Stream-based Prefetch Algorithm
Input: V PNA, strideA, PIDA, V PN history[L],
stride history[L− 1];
Output: stride target, pattern stride ;

1: pattern target[0] = stride history[L− 2]
2: pattern target[1] = strideA
3: next stride[] % to store stride target candidates
4: stride sum[] % to store pattern stride candidates
5: last index = L− 2
6: for i in [L− 3 to 0] do
7: if stride history[i] == pattern target[0] and

stride history[i+ 1] == pattern target[1] then
8: save stride history[i+ 2] into next stride[]
9: save V PN history[last index] − VPN history[i] into

stride sum[]
10: last index = i
11: if next stride is not empty then
12: stride target = the stride in next stride[] with the most

occurrences
13: pattern stride = the stride in stride sum[] with the most

occurrences
14: else
15: stride target = 0, pattern stride = 0
16: send {V PNA+stride target + i ∗ pattern stride, PIDA} to

prefetch execution engine.

The core of the framework is a Stream Training Table (STT),
with 64 entries to identify stream patterns. Figure 7 shows its
structure. Each entry represents a potential stream, with a PID
field, an LRU bit, a VPN history saving the last L received
VPNs with the same PID, and a stride history saving the L−1
corresponding strides derived from VPN history. A larger L
means a more stringent condition to identify a stream and is
more robust to filter out irregular access sequences. We set
L = 16 in our implementation.

For each hot page A (i.e., V PNA, PIDA), we first check
whether V PNA belongs to an existing stream in the STT
by checking these conditions: (a) whether PID=PIDA, (b)
the distance between the VPN history[last one], the last VPN
received in that array, and V PNA is within a predefined value
of ∆stream pages (we use ∆stream=64 to find stream patterns
as many as possible). If all conditions are met, we append the
new V PNA to VPN history, and its stride from the previous
VPN to stride history.

Once VPN history is full, adaptive three-tier prefetching
starts to work: we first apply a Simple-Stream-based Prefetch
algorithm (SSP) to identify simple streams as it covers a major
part of stream patterns (see §VI-D) and is easy to identify with
majority-based detection, If SSP fails, we apply a Ladder-
Stream-based Prefetch algorithm (LSP) to identify ladder
streams. The last resort is a Ripple-Stream-based Prefetch
algorithm (RSP) to identify ripple streams.

2) SSP: We say a stride is dominant in a stride history if
a stride value has occurred more than or equal to L/2 times.
Once a dominant stride is found, we send a prefetch request to
the policy engine, whose VPN equals to V PN history[L−
1] + i× stride, where i denotes the prefetch offset (§III-E).

3) LSP: Algorithm 1 shows the detailed algorithm. For a
new stride (strideA) in a stride history, LSP identifies if the
stride is part of the repetitive ladder-formed spatial pattern.

Algorithm 2 Ripple-Stream-based Prefetch Algorithm
Input: V PNA, strideA, V PN history[L], stride history[L−1]
Output: stride target;

1: max stride = 2, ripple num = 0, accumulate stride = 0
2: if abs(strideA) ≤ max stride then
3: ripple num++
4: accumulate stride = 0
5: for i in [L− 2 to 0] do
6: accumulate stride += stride history[i]
7: if abs(accumulate stride) ≤ max stride then
8: ripple num++
9: accumulate stride = 0

10: if ripple num ≥ L/2 then
11: stride target = 1
12: send { V PNA + i ∗ stride target, PIDA} to prefetch policy

engine.

We introduce a smaller target pattern (pattern target in line 1-
2), which is a consecutive M strides including strideA, if it is
repetitive in stride history, i.e., there exists multiple candidate
patterns matched with the target one in stride history (line
6-10), we regard this repetition as a subset of the ladder
streams. Thus, the future accesses of the target pattern should
follow the spatial correlation between the candidate patterns,
which can be derived from stride history. Thus, we determine
the next stride of the target pattern (stride target), and the
page stride (or distance) between future pattern repetitions
(pattern stride) from the dominant next stride of the candidate
patterns and the dominant stride between observed repetitive
patterns, respectively. Then, we send a request of prefetching
page V PNA + stride target + i ∗ pattern stride to policy
engine. We set M = 2, a larger M means a more stringent
condition to identify the repetition.

We take Figure 2 as an example. When receiving a11, we
obtain 2 strides {a11-a10, a10-a9} to form pattern target,
and identify a set of pattern candidates (pattern candidate)
matched with pattern target by traversing stride history from
its tail (line 6), i.e., {a7-a6, a6-a5}, {a3-a2, a2-a1}.
For every pattern candidate, we save its next stride into
next stride, i.e., a8-a7 and a4-a3, and the page stride from
its next pattern candidate or target pattern into stride sum,
i.e., a11-a7 and a7-a3, respectively. Thus, stride target and
pattern stride are a8-a7 and a11-a7, respectively.

4) RSP: We use RSP as the last resort to identify whether
the new stride belongs to a ripple stream. Algorithm 2 shows
the detailed algorithm. Recall that, ripple streams intrinsically
are a set of simple streams with stride 1, lying within a
tiny address space. The insight is that, if a hot page V PNA

belongs to a ripple stream, even if the previous accesses
in VPN history hop out of the stream (resulting in a larger
stride), there exists an access eventually will be back to
the same ripple stream after a few hops, resulting in the
absolute cumulative strides from V PNA equal to 1 (line 2-
9). We take Figure 3 as an example. Since the cumulative
stride from a3 to a2 is 1, a3 is a ripple page. As a ripple
stream can be out-of-order accessed, distorting stride 1, We use
max stride to tolerate out-of-order accesses, which replaces
stride 1 to identify ripple pages (line 2 and 7). However,



the across-stream accesses can be mistakenly considered as
out-of-order accesses if max stride is set too large. We set
max stride = 2 to allow 2 out-of-order accesses, which
happens most of the time. Once the number of ripple pages
exceeds half of V PN history size (line 10), we determine
the new page belongs to a ripple stream, thus send a request
of prefetching page V PNA+i∗stride target to policy engine,
where stride target = 1 for ripple streams.

E. Prefetch Policy Engine
Obtaining real-time abundant traces from MC enables fine

grain control on prefetch behavior, we propose a prefetch
policy engine to tune prefetch aggressiveness. The engine has
two knobs: prefetch intensity and prefetch offset. We expect to
integrate more policies in the future.

Prefetch intensity In principle, the streams with more
intensive memory accesses should prefetch with a higher
intensity. With hot pages from MC, HoPP can sense the
memory access rate of every stream. To match the memory
accessing intensity, HoPP prefetches one page per hot page
received, if the corresponding stream is identified. If the
current network has abundant bandwidth, HoPP can prefetch
more than one page (e.g., 2) to avoid future page faults due
to network congestion, as the network bandwidth is too low
to sustain the stream’s memory access rate.

Prefetch offset (i.e., i in §III-D) ensures timeliness by
dictating how far to prefetch when the algorithm has identified
a stream pattern for prefetching. For instance, an i = 1 means
the second page following the stride for ripple streams. We
use prefetch offset to ensure that a prefetched page will be
ready before it is accessed, thereby avoiding stall from page
fault due to uncertainties in OS and network. On the other
hand, we should not prefetch too far, which harms the prefetch
timeliness, since the page will stay in the local memory for a
long time before it is accessed. We denote this time period as
T . HoPP measures T for every prefetched page of a stream and
makes sure that T is within a predefined interval [Tmin, Tmax].
If T is smaller than the lower-bound Tmin, it is likely that the
page is going to be late, thus HoPP prefetches further pages
by setting i = i×(1+α). If T is larger than Tmax, HoPP will
prefetch closer pages by setting i = i × (1 − α). By default,
we use α = 0.2, imax = 1K,Tmin = 40us, Tmax = 5ms.

F. Prefetch Execution Engine
The prefetch execution engine is responsible for reading

data from the remote and establishing PTEs. In specific, it
accepts prefetch requests from the policy engine (§III-E). It
checks for duplicated requests and then reads from the remote
using RDMA. Whenever receiving a prefetched page, the
engine injects PTEs to avoid future page faults on this page.
To make early PTE injection effective, the prefetch algorithm
requires a high accuracy (e.g., over 90%). If the accuracy is
low, most of the prefetched pages will not be used. They end
up wasting bandwidth and polluting cache. Fortunately, HoPP
delivers high prediction accuracy thanks to the full memory
access trace (§VI). This explains why HoPP can leverage the
early PTE injection technique but Fastswap and Leap cannot.

IV. DISCUSSION
Huge Page Support. HoPP design now supports huge page
translation (§III-C). However, kernel-based paging system
only supports 4KB page swapping. The kernel swap latency
of a 2MB page exceeds 1ms, which adds more latency in
applications’ critical path. Thus, it is not desirable to access
huge pages remotely. HoPP can be designed to support large
page prefetching. First, the kernel needs to reserve 2MB huge
page space in advance. When HoPP detects the page stream
is long enough, it can choose to swap 512 consecutive future
pages with one prefetch request to the reserved 2MB space.
Why hardware-software co-design? The reason why we
design HPD and RPT cache in hardware is that they are
general functions without frequent updates, minimizing hard-
ware cost, which is easier to add to commercial processors.
We implement prefetching training framework in software to
support flexible algorithm adaptations or implement a new
advanced algorithm like our adaptive three-tier prefetching and
machine learning-based ones. In addition, we leave prefetch
policy engine in software to adapt to the fluctuated host and
network delays. Therefore, HoPP cannot be realized with
pure software approach (lack of real-time full memory trace),
and pure hardware approach which cannot support flexible
algorithms adaptations and new algorithm update. Besides
prefetching, the software can serve other purposes with full
memory traces, e.g., improving kernel page eviction.

V. IMPLEMENTATION
We implemented a proof-of-concept prototype based on a

real commodity X86 platform instead of implementing HoPP
in a simulator, because the speed of the simulator is too slow,
e.g., Gem5 with full system mode is thousands of times slower
than the actual application running time [10], which lead it
unable to simulate full application execution. Specifically, we
implemented HoPP as a separate data path in Linux kernel
v4.11, alongside the data path of a remote memory system
preinstalled at the same server and used HMTT that can track
and output memory trace, to emulate the memory tracking
module in the design (see Figure 4).

In principle, HoPP can work with any existing kernel-
based disaggregated memory systems with little modifications.
HoPP will not affect other systems’ workflow. In specific,
the prefetching data path in HoPP is independent of other
systems’ page fault and swapping path. Nonetheless, HoPP
may still share the networking infrastructure with others.
Though both are state-of-the-art kernel-based disaggregated
memory systems, Fastswap [7] performs better than Leap [38]
(§VI). Hence we integrate HoPP with Fastswap.

Hybrid Memory Trace Tool (HMTT). HMTT [23] uses
a DIMM-snooping mechanism to monitor the memory bus.
HMTT can collect full off-chip memory reference traces orig-
inated from applications. Besides, it can correlate the trace
with high-level events such as read and write [23]. We deploy
HMTT as a bump-in-the-wire between the memory controller
and the DRAM chips.

HMTT-based Memory Tracking Emulation. We build
a real platform using HMTT to capture and output the full
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memory access trace (see Figure 8). Originally, HMTT is
configured to forward the memory trace collected at one node
to the other receiving node via PCIe, which in turn persists the
trace on its local SSD [23]. To capture and make use of the
trace at the same node, we modified the HMTT configuration.
As Figure 8 shows, HMTT is in-between the DIMM and
DRAM 0 of Socket 0. It can obtain real-time memory accesses
to DRAM 0. By configuring the OS to only run on DRAM 0,
HMTT tracks the memory accesses of all running applications.
Recall, HoPP hardware design in MC only outputs hot pages,
thus it consumes little memory bandwidth, and can write to
the same DRAM as applications. However, HMTT outputs all
the memory access traces. First, To avoid memory bandwidth
interference at the same DRAM, we configure HMTT to write
the traces collected in DRAM 0 to DRAM 1 by sending the
traces via PCIe to a hardware-based receiving card that is
responsible to write them to a reserved area in DRAM 1 with
DMA. Each trace has four fields: 8-bit sequence number, 8-bit
timestamp, 1 bit read/write flag, and 29-bit physical address.
DRAM 0 and DRAM 1 are located in separate sockets, so that
the write of memory traces cannot be captured again by HMTT.
Second, we have to realize HPD in software. which is different
from the design (§III-B). HPD reads traces from that reserved
area in DRAM 1 to detect hot pages and forwards them to
RPT, thus it takes up an additional CPU core. Note that the
rest of the prototype implementation follows the design (§ III).

Reverse Page Table Maintenance We install callbacks to
kernel functions to keep the RPT up to date. For instance,
we use set_pte_at and pte_clear for 4 KB pages.
Similarly, we use set_pmd_at and pmd_clear for huge
pages. Whenever kernel invokes these functions HoPP will
update the RPT accordingly.

VI. PERFORMANCE EVALUATIONS

In this section, we first evaluate real-world large in-memory
applications with HoPP (see Table IV). We compare HoPP
to two disaggregated memory systems, Fastswap [7] and
Leap [38] and Depth-N [9], a page prefetching using early
PTE injection (§II-C). Second, we perform sensitivity tests
for the techniques proposed in HoPP. Finally, we verify the
feasibility of our hardware modules.

Testbed. We used two nodes connected to an Infiniband
switch. The first node acts as a compute node running ap-
plication workloads on top of HoPP while the second node
provides remote memory. Both servers have 14-cores and a

Workloads Footprint (GB) Cores
GraphX(BFS,CC,PR,LP) 33 14

Spark-Bayes 33 4
Spark-K-Means 13 3
OMP-K-Means 3.2 2

High Performance Linpack 1.2 2
NPB(CG,FT,LU,MG,IS) 1 − 7 2

QuickSort 4 1
TABLE IV

APPLICATION WORKLOADS.
56Gbps RDMA NIC. The compute node has 2 × 32GB of
DRAM while the memory node has 6×8GB of DRAM. Both
HoPP and the other systems under comparison are configured
with their default parameters unless specified.

Workloads. Table IV shows the 15 real-world large in-
memory applications used in our evaluation. Note that the
footprints of the Spark applications increase gradually, e.g.,
the GraphX workload (running with Spark) consumes 33GB
in total, but its running time can be divided into three parts
with each part consuming different amount of memory: 11GB,
22GB, 33GB for 1st, 2nd and 3rd part respectively.
A. Metrics

Similar to prior work [38], we measure the performance of
prefetching algorithm with three metrics: Accuracy: the ratio
of total page hits and the total prefetched pages. Coverage:
the ratio of the number of page hits from the prefetched
pages and the number of remote requests plus the number
of prefetch hits. Timeliness: the time gap from the time
a prefetched page is received to the time it is first hit.
For all tests, we report normalized performance [38]. The
baseline is the completion time when a workload is using local
memory only. The normalized performance can be calculated
as CTlocal/CTsystem, where CTlocal and CTsystem denote
the completion time of the local scenario and the compared
disaggregated system, respectively.

B. Real Application Performance
In the section, we evaluate the normalized performances

of various workloads in Table IV when running with HoPP.
For comparison, we also evaluate the normalized performance
of the same workloads with Fastswap and Leap. As Leap
performs multiple orders worse than the other two, for clear
illustration, the results of Leap are omitted.

Note that JVM-based applications run atop JVM, which can
manage the memory configuration differently from the ones
without JVM. The consequence is a different memory allo-
cation, e.g., with the same workload, Spark divides Kmeans
workload into multiple stages, each stage writes the data into
a different memory area, but OMP-Kmeans allocates a large
array and writes all the data into a contiguous memory. This
leads to more streams patterns in spark applications, and the
length of the stream is relatively small, thus the repetitive
patterns might stop before HoPP finishes identifying them.

Workloads without JVM. We evaluate the normalized per-
formance of HoPP and Fastswap when running the application
workloads with two memory limits, i.e., the local memory is
set to 50% and 25% of the workload footprint, respectively.
Figure 9 shows that, for 50% memory limit, HoPP’s average
normalized performance is 67.44%, and 3.53% slowdown
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Fig. 9. Normalized performance of Fastswap and
HoPP with 50% and 25% local memory using the
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0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

Fastswap 50% HoPP 50% Fastswap 25% HoPP 25%

Fig. 10. The accuracy of Fastswap and HoPP’s
prefetchers running workloads without JVM.
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Fig. 11. The coverage of Fastswap and HoPP’s
prefetching running workloads without JVM.
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Fig. 12. Normalized performance of Fastswap and
HoPP using Spark workloads.
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Fig. 13. The accuracy of Fastswap and HoPP’s
prefetcher running Spark workloads.

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag
e

Fastswap HoPP SwapCacheHit

Fig. 14. The coverage of Fastswap and HoPP
running Spark workload.

at least, compared to local scenario. For comparison, the
average normalized performance of Fastswap is 56.28%, and
11.15% slowdown at least. For 25% memory limit, the average
normalized performance of HoPP and Fastswap is 53.07%
and 40.91% respectively. The least slowdown for HoPP and
Fastswap is 6.20% and 23.24% respectively. Thus, for 50%
memory limit, HoPP accelerates Fastswap by 59.8% at most,
and 4.2% at least. For 25% memory limit, HoPP accelerates
Fastswap by 49.7% at most, 14.7% at least. The average
performance improvement over Fastswap is 24.9% and 32%,
with 50% and 25% memory limit, respectively.

Figure 10 shows the prefetching accuracy of HoPP and
Fastswap’s prefetching, respectively. The prefetching accuracy
of HoPP is over 90%, implying that almost every prefetch
from HoPP is correct, thereby greatly improving the perfor-
mances of the application workloads (in Figure 9). In addition,
there are few incorrect prefetches, thus wasting little network
bandwidth and polluting local memory. The average accuracy
improvement is 18% over Fastswap’s.

Figure 11 shows the coverage of HoPP and Fastswap’s
prefetching, respectively. The prefetching coverage of HoPP
is divided into two parts: one part is the number of the pages
prefetched during page faults. Whenever these prefetched
pages are accessed by the application, they will cause
page faults and hits in Swapcache. Since Fastswap al-
ways prefetches upon page faults, its coverage only contains
Swapcache-hits as shown in Figure 11. The other part is
the number of pages prefetched according to the prefetcher
implemented in prefetch framework (i.e., adaptive three-tier
prefetching), which does not cause page faults. It is because
HoPP injects PTE whenever a prefetching request is finished.
Whenever a prefetched page is hit, it causes a DRAM-hit.
HoPP has the best coverage for QuickSort and Kmeans,

with more than 99% coverage, thus no page fault observed.
Both high accuracy and coverage ensure that HoPP accelerates
the application completion time, even achieves the completion
time comparable to the local scenario.

Spark workload. Similarly, we evaluate the performances

of spark workloads with HoPP and Fastswap, respectively.
The local memory used by Spark-Kmeans is limited to 2GB,
whereas the local memory of the other Spark applications
is limited to 11GB. This is because Spark-Kmeans has a
much smaller footprint as shown in Table IV. Figure 12 shows
that HoPP’s average normalized performance is 35.73%, and
45.69% slowdown at least, for comparison, the average nor-
malized performance of Fastswap is 26.37%, and 60.37%
slowdown at least. In comparison, HoPP accelerates Fastswap
by 34.7% on average. Specifically, HoPP has the largest ac-
celeration on Spark-Kmeans, by 52.2%, while has the smallest
acceleration on GRAPHX-CC, by 18.4%.

Figure 13 and Figure 14 show the prefetching accuracy and
coverage of their prefetchings, respectively. HoPP identifies
fewer stream patterns in the spark workloads due to the JVM’s
memory management and GC, thus the coverage of Spark
workloads is not as high as the other applications without
JVM. Despite this, HoPP is still 18% and 29.1% higher than
Fastswap on average prefetching accuracy and coverage.

We evaluate the speedup of HoPP compared to Fastswap
when running multiple application workloads simultaneously.
We limit each application’s local memory to 50% of its
footprint, respectively, and isolate applications with cgroup [4].
Figure 15 shows that, HoPP improves the performance for the
multiple-applications scenarios. This is because the hot page
trace contains application semantics, i.e., PID. We can easily
train prefetching algorithms according to PID by aggregating
hot pages to the same PID.

C. Comparison with Depth-N
We implemented Depth-N prefetching atop of Fastswap

according to [9]. Figure 16 shows the normalized perfor-
mance of Depth-16, Depth-32, Fastswap and HoPP. Depth-16
and Depth-32 don’t necessarily outperform Fastswap for real
applications, e.g., NPB-MG, while HoPP achieves the best
of four. To validate why early PTE injection does not take
effect for Depth-N, we summarized in Figure 17 the ratio of
the number of remote accesses of four systems to the case



Accuracy
Program name Fastswap SSP SSP+LSP SSP+LSP+RSP
QuickSort 0.91 1.00 1 1
HPL 0.67 0.97 0.966 0.941
Kmeans-OMP 0.88 1.00 1 1
Spark-CC 0.58 1.00 1.00 1.00
Spark-BFS 0.63 1.00 0.992 0.992
NPB-FT 0.70 0.99 0.99 0.99
NPB-MG 0.81 0.99 0.99 0.99

Performance
Program name Fastswap SSP SSP+LSP SSP+LSP+RSP    
QuickSort 1.086 1.086 1.086
HPL 1.059634703 1.083076636 1.117
Kmeans-OMP 1.345 1.345 1.345
Spark-CC 1.12 1.15 1.18
Spark-BFS 1.23 1.254 1.356
NPB-FT 1.317615283 1.327615283 1.337615283
NPB-MG 1.39 1.42 1.597903176

Performance HoPP

QuickSort 1.076
HPL 1.117
Kmeans 1.345

Spark-BFS 1.326
Kmeans 1.305
NPB-FT 1.307615283

NPB-MG 1.557903176
HPL 1.107
Spark-CC 1.17

QuickSort 1.081
Spark-CC 1.15
NPB-MG 1.567903176

Coverage Fastswap SSP SSP+LSP SSP+LSP+RSPSwapCacheHit
QuickSort-F 0.6471
QuickSort-SSP 1

QuickSort QuickSort-SSP+LSP 1
QuickSort-SSP+LSP+RP 1

HPL-Fastswap 0.5838
HPL-SSP 0.45400186 0.33245368
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Fig. 15. Speedup when multiple applications run
together.
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Fig. 16. Normalized performance of Depth-16,
Depth-32, Fastswap and HoPP.
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Fig. 17. The ratio of the number of remote memory
accesses of Depth-N, Fastswap and HoPP to the
one resulted from Fastswap without prefetching.
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Fig. 18. Speedup of three-tier prefetching.

Accuracy
Program name Fastswap SSP SSP+LSP SSP+LSP+RSP
QuickSort 0.91 1.00 1 1
HPL 0.67 0.97 0.966 0.941
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Fig. 19. The accuracy of three-tier prefetching.
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Fig. 20. The coverage of three-tier prefetching.

Accuracy
Program name Fastswap SSP SSP+LSP SSP+LSP+RSP
QuickSort 0.91 1.00 1 1
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Fig. 21. The impact of accuracy and coverage of the prefetch algorithm
on normalized performance. The value in brackets near the application name
represents the normalized performance.

without prefetching, i.e., the number of remote accesses when
running Fastswap without prefetching (we call it normalized
remote access). As shown in Figure 17, Depth-N results in
the most remote accesses of the four, which shows that its
rigid prefetching algorithm cannot effectively reduce page
faults when facing various access patterns. Note that, although
HoPP does not necessarily have the maximum reduction, it has
the best performance, which attributes to early PTE injection
without hurting the prefetching flexibility (§II-C).

D. Prefetching Performance Deep Dive

Figure 19 and Figure 20 show the accuracy and coverage
improvement by the three prefetch algorithms, i.e., SSP, LSP,
RSP, in adaptive three-tier prefetching (§III-D). The accuracy
of each algorithm is high (over 90%), as combining them
together does no reduce the accuracy. For coverage, simple
streams identified by SSP take a major part, while LSP and
RSP can further improve the coverage, e.g., for HPL and NPG-
MG, LSP offers an additional 9.1% coverage, and RSP can
provide an additional 10% coverage.

We use completion time speedup (Speedup) to eval-
uate the performance of every prefetch algorithm. We
take Fastswap as the baseline, thus it is defined as 1 −
CTsystem/CTFastswap. where CTsystem and CTFastswap de-
note the completion time of the system to compare, and
Fastswap, respectively. Figure 18 shows, with more algorithms
added, HoPP has a better Speedup. This is because more al-
gorithms improves the prefetch coverage, while still maintains
a high prefetch accuracy.

Figure 21 shows the relationship between normalized per-
formance, prefetching accuracy, and prefetching coverage.
Note that the coverage of HoPP here only counts the DRAM-
hits. For HoPP, if the accuracy and coverage are both close to
1, the normalized performance is approaching to the optimal,
1, regardless of how much the working set is disaggregated.
e.g., Quicksort and Kmeans-OMP. This is because HoPP uses
early PTE injection and asynchronous prefetching data path
to eliminate page faults, thus the application no longer hangs
upon page faults. In contrast, Fastswap’s accuracy and cover-
age are worse due to its limited knowledge of memory access
history. Interestingly, even if Fastswap’s coverage is similar
to or better than HoPP’s (while both accuracies are similar),
Fastswap’s application performance is still worse. This is due
to the large overhead of prefetch-hit (see §II-C), e.g., for
GRAPHX-PR and NPB-MG, HoPP accelerates Fastswap by
about 30%, This is because HoPP greatly reduces the overhead
of prefetch-hit with early PTE injection, which compensates
for the negative effect of the worse coverage.

E. Design Sensitivity
We investigate the effect of every technique used in HoPP

on the overall performance. We use Speedup defined in §VI-D
to evaluate the effect of early PTE injections (§III-F), three-
tier prefetching (§III-D) and prefetch offset control (§III-E).
The benchmark allocates 2GB memory per worker thread, and
uses 2 threads with each reading and adding-up all the values
of all 8-byte blocks within a page (i.e., 512 additions for a
page), which emulates a bigdata computation like Kmeans.
The local memory is limited to 1GB.



Program Kmeans quicksort HPL CG FT LU MG IS PR CC BFS LP Kmeans(S) Bayes(S) Average
HPD 0.19 0.17 0.30 0.19 0.19 0.14 0.12 0.12 0.18 0.12 0.14 0.14 0.09 0.11 0.16
RPT 0.004 0.004 0.007 0.005 0.004 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.002 0.003 0.004

TABLE V
BANDWIDTH CONSUMED BY EXTRACTING HOT PAGE AND QUERYING THE REVERSE PAGE TABLE. (UNIT: %).
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Fig. 22. The impact of different techniques in HoPP, Fastswap is the baseline.

When Leap is used, because two threads run at the same
time, its prefetching cannot distinguish different memory ac-
cess streams, thus calculates the wrong stride, negatively mak-
ing Leap even worse than Fastswap. VMA-based prefetching
is 3.6% better than Fastswap, because it prefetches adjacent
pages based on VMA, where VMA is a resemblance of
page clustering, but Fastswap prefetches adjacent pages based
on swap offset, so VMA-based prefetching prefetches more
accurately. HoPP’s performance is 40% higher than VMA-
based perfeching, which is very close to the one in the local
scenario. As this benchmark only contains simple streams with
no interference, the pages prefetched by HoPP and VMA-
based prefetching are roughly the same. Thus, the 40% of
the performance gain is due to early PTE injection which
eliminates page faults from happening.

Effect of timeliness. HoPP automatically changes the
prefetch offset according to the current timeliness. When
HoPP is started, the application must access the remote
memory via page faults. The execution speed is very sluggish,
thus the timeliness is large. With more prefetch-hits, the
timeliness is becoming smaller over time, HoPP will detect
it and increase the prefetch offset. As shown in Figure 22,
HoPP (with offset adjusted dynamically) performs much better
than HoPP with a fixed offset: i = 1 (HoPP (offset=1)), and
i = 20K (HoPP (offset=20K)), which shows the benefit of
prefetch offset control.

F. Hardware Design Feasibility

We implement several modules in Verilog to verify the
feasibility of the proposed hardware design together with their
memory bandwidth consumption. We leverage CACTI [59]
to estimate area and static energy expense using 22 nm
technology nodes. (1) Hot page detection. We used HMTT
to collect offline traces of various applications and analyzed
the extra memory bandwidth consumed by writing hot pages.
As Table V shows, the average extra bandwidth used by
writing hot pages is only 0.16%. This is because at most
every N (N = 8) accesses results in 1 hot page. The CACTI
reports that HPT’s area is 0.000252mm2 and its static energy
expanse is 0.0959mw. (2) Reverse page table. In §III-C, we
analyzed that the hit rate changes after adding different sizes
of RPT cache, With a 64KB cache, only about 0.3% of the
hot pages are accessed to RPT on DRAM. Table V shows that
the average extra bandwidth consumed is only 0.0038%. The

CACTI reports that the area is 0.0673 mm2 and the static
energy consumed is 21.4mw.

VII. RELATED WORK
Remote memory. Many solutions have been proposed to
access remote memory, such as using an object-based inter-
face [12], [13], [42], using swapping interface [7], [22], [38],
global virtual machine abstraction [66], distributed data stores
and file systems [6], [12], [31], [35], [45]. Meanwhile, others
propose to use hardware-based methods to access remote
memory [36], [44]. HoPP does not rely on page faults and
prefetches at any time whenever there is a stream identified.
Prefetch algorithms. A large number of prefetching tech-
niques have been proposed to hide the latency overhead
of file accesses and page faults [14], [21], [26]. For cache
line granularity prefetching, some works propose to utilize
memory-side access patterns [14], [30], [43], [57], [60], [61],
injected instructions [15], [28], [29], [48], [51], and hardware
features [24], [25], [56], [69]. HoPP utilizes full memory
access history to design prefetch algorithms.

VIII. CONCLUSION

This paper presents HoPP, a HW/SW co-designed frame-
work. HoPP introduces hot page detection and reverse page
table cache in MC, which transfers sufficient real-time page ac-
cess trace to the OS at little cost. This key design opens a new
design space for kernel-based remote systems. First, it not only
improves existing state-of-the-art prefetch algorithms, but also
offers more insights to design a more sophisticated prefetch
algorithm, i.e., Adaptive Three-tier Prefetching. Second, it
allows prefetching to run as a separate data path alongside
the conventional data path of remote accesses via page faults,
which allows fine-grained prefetching control, and potentially
hides the swap latency. Third, it maximizes the benefit of
early PTE injection without hurting the prefetching flexibility
by calculating the actual prefetching accuracy/coverage using
memory trace. We implemented a proof-of-concept prototype
based on a commodity X86 platform with a hardware-based
memory tracking tool, and evaluated its performance. Experi-
ments show that HoPP performs better than the recent remote
systems like Fastswap and Leap.
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