
Challenges in Building and Deploying Disaggregated Persistent Memory

Yizhou Shan, Yutong Huang, Yiying Zhang
Purdue University

{ys, huang637, yiying}@purdue.edu

Byte-addressable non-volatile memory (NVM) such
as 3D-Xpoint and the memristor provides persistence,
close-to-DRAM performance, and high density. Apart
from packaging NVMs in SSDs and using them as stor-
age devices, NVMs can be used as memory (e.g., at-
tached to and accessed directly from the memory bus).
These usage models are often called non-volatile main
memory or persistent memory (PM). In 2018, Intel re-
leased Optane PM and it is recently made available in
the Google Cloud [2].

The first and a fundamental issue to be solved before
PM can be used in datacenters is how they should be
deployed. Existing proposals have all used the model
of attaching PMs to the main memory bus of commod-
ity servers. However, such model requires datacenters to
purchase and install new servers that can host PMs, since
datacenter vendors usually pushes for full hardware uti-
lization of servers and do not leave empty DIMM slots in
their existing servers.

We believe that a more cost-efficient and flexible way
to deploy PM is to build PMs as stand-alone devices and
to attach them directly to the datacenter network, a model
we call disaggregated persistent memory, or DPM. Each
DPM device has a network interface, a PM controller,
and bulk PM. DPM shares many benefits with a more
general disaggregated datacenter architecture [3]. For ex-
ample, DPM requires no general-purpose cores and all
its functionalities can be implemented in one hardware
board. Another submission from our group [4] describes
the benefits, challenges, and software solutions of DPM.

This work addresses the hardware and networking
challenges in building and deploying DPMs. Below, we
discuss the challenges we foresee and potential solutions
we propose.
Network interface of DPM. Host machines access
DPMs directly through the network; thus each DPM
need to implement a network interface. Modern data-
center NICs and OS network stacks support many net-
work functionalities that are heavy-weight and not nec-
essary for DPMs. Host machines should be able to ac-
cess remote DPMs with low latency and high bandwidth
to match PM’s DRAM-like performance.

A unique feature of DPM that we can leverage in
our network interface design is that DPMs are only the
passive receiver of requests from host machines and do
not initiate new network requests or forward network re-
quests. This property implies that DPM does not need to

perform flow control or packet forwarding. Moreover,
DPMs (more specifically, the PM controlling part of
DPMs) directly consume incoming network requests and
there is no need to support multiple VMs or processes as
consumers or complex queue/load management.

We believe that we should build new lightweight, cus-
tomized network interfaces for DPM. Similar to the Cat-
apult’s Lightweight Transport Layer design [1], we only
need to implement the most basic network functionali-
ties in DPM, including basic connection management,
header management, and reliable network delivery. To
improve DPMs’ throughput and tail latency, we believe
that DPMs should employ a large number of parallel
units to handle network requests, but each of them will
be lightweight and low-power.
Interface and API implementation. DPMs should sup-
port a minimal yet flexible set of APIs for host machines
to build various PM-based software: e.g., making con-
nections, space allocation, read and write. A new chal-
lenge is the protocol to ensure data persistence: data not
only needs to be received by the network interface, but
also written all the way to the NVM media. DPM should
support new operations for making NVM writes persis-
tent (i.e., data is written all the way to the physical NVM
media instead of in volatile caches or buffers). Such op-
erations can either be a persistent write operation where
each write is guaranteed to be persistent or a persistent
flush operation which flushes all outstanding writes to be
persistent.
Addressing. There are three options of addressing PM in
DPMs. First, host machine applications can use virtual
memory addresses and a host-side library or kernel main-
tains the mapping from these virtual addresses to phys-
ical memory addresses of DPMs. Hosts send physical
addresses to DPMs, which then directly access PM using
these addresses. A similar approach is to instead main-
tain the mapping at DPMs and let host machines send
virtual addresses over the network. The final option is to
directly expose physical addresses to host applications.

There are different trade-offs for each of these options.
The first and the third options remove the need for DPMs
to maintain any address mappings, making DPMs sim-
pler and much cheaper to build. However, every time
when a DPM moves data around (e.g., due to load balanc-
ing or wear leveling), host machines need to be informed.
The second option requires DPM to maintain mappings
(either in a DRAM attached to the main DPM hardware

1

yizhoushan
Typewritten Text
Appear at NVMW'19



board or in on-board SRAM), which will increase DPM’s
monetary and energy costs. The third option needs no
mapping at all and is the cheapest method. However, we
will need to employ new protection mechanisms that can
work with physical addresses directly.

Apart from the location of maintaining address map-
ping, another open issue is the granularity of address
mapping. All common modern architectures use paging
to maintain virtual memory (usually in 4KB granularity
and optionally in huge 2MB or 1GB pages). With PM’s
high density, we anticipate DPMs to have TB-level ca-
pacity (Google already provides virtual machines with
7TB PM [2]). Paging will cause either high mapping
space overhead (small page size) or internal fragmenta-
tion (huge page size). Since we are building DPM archi-
tecture from scratch, we will have the freedom to choose
memory mapping granularity and mechanism, for exam-
ple, with segmentation.
Space allocation and operation scheduling. Applica-
tions need to allocate and de-allocate PM space in DPMs.
Instead of letting host machines manage PM space, it is
easier and more efficient to have DPMs manage their own
PM space. To fit the limited hardware resource of DPM
devices, DPMs should use simple allocation mechanisms
that require small metadata.

We anticipate PMs to have large internal parallelism.
DPMs need to manage and schedule operations across
these internal parallel units. There are three goals of
DPM operation scheduling. First, DPMs should sched-
ule requests to deliver good performance, for example,
by scheduling requests to as many parallel PM units as
possible to improve throughput. Second, DPMs should
guarantee tail latency for applications that require SLOs.
Finally, since many PM-based software systems require
or desire ordering of I/O operations, DPMs should per-
form their scheduling in a way that still preserve user-
requested ordering points.
Hardware platform. There are several hardware options
to implement a DPM device, including ASIC, FPGA,
and SoC. Each of these hardware platform has its pros
and cons. ASICs offer high performance and low power
consumption. However, the development cycle of ASIC-
based solutions is costly and lengthy. Moreover, ASICs
only provide fixed function after manufacturing. DPMs
can benefit from ASICs’ performance advantages, but
ASICs come short when users of DPM want to imple-
ment new features in DPMs.

SoCs contain one or more general-purpose, low-power
cores and can run more complex software and full-
fledged OSes. Thus, SoC-based DPM solutions enjoy
the same flexibility benefits as software-based solutions.
However, SoCs are generally slower than their hardware
counterparts.

FPGAs are reconfigurable hardware that meet the flex-

ibility needs of many modern datacenter applications and
they have been deployed in several major clouds [1]. FP-
GAs are more power-hungry and less performant than
ASIC, but FPGAs can efficiently accelerate many log-
ics that have inherent parallelism. FPGA solutions are
also much faster to develop than ASICs. An FPGA-based
DPM has software-like flexibility and hardware-like per-
formance and could be a viable solution for future DPMs
in datacenter environments.
Large-scale deployment and network topology. A fi-
nal challenge to be solved is the actual deployment of
DPMs in existing datacenters. Being able to directly at-
tach to the network makes it easier to connect DPMs,
but we still need to change existing network topology or
potentially build a new one. Where DPMs are placed
in a topology and how far (in network hops) they are
from host machines will largely affect application per-
formance.

The easiest way is to attach DPMs to existing ToR
switches. But existing ToR switches may not have
enough free ports or the locations of free ports are far
from other host machines. Designing new topologies for
DPMs allow customization and potentially better perfor-
mance or cheaper monetary cost, but doing so will re-
quire changes to existing datacenter topologies.

There are more challenges in deploying DPMs in
large-scale datacenters. For example, a common use
model is to have multiple host machines share a DPM
device, which can create network congestions. With the
scale of one thousand nodes or beyond in a datacen-
ter, network delay can largely impact application perfor-
mance when host machines have to cross a few switches
to access DPMs.
Conclusion and future work. This document presented
a set of challenges we foresee in building and deploying
DPMs and solutions that we proposed. We believe that
it could be useful for future researchers and practitioners
who work on PMs in datacenter environments. We are
currently in the middle of implementing our own FPGA-
based DPM solutions and we hope to be able to present
a more concrete solution at NVMW’19.

References
[1] Adrian M. Caulfield et. al. A cloud-scale acceleration ar-

chitecture. In The 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO ’16).

[2] Google. Available first on Google Cloud: Intel Optane DC
Persistent Memory. goo.gl/uNjWG2.

[3] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. Legoos: A dis-
seminated, distributed OS for hardware resource disaggre-
gation. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’18).

[4] S.-Y. Tsai and Y. Zhang. Building Atomic, Crash-
Consistent Data Stores with Disaggregated Persistent
Memory. In NVMW’19 Submission 41.

2




