
Storm: a fast transactional dataplane for
remote data structures

Stanko Novakovic1∗ Yizhou Shan3 Aasheesh Kolli2, 4 Michael Cui2

Yiying Zhang3 Haggai Eran5, 6 Boris Pismenny5 Liran Liss5 Michael Wei2

Dan Tsafrir2, 6 Marcos Aguilera2

1Microsoft Research 2VMware 3Purdue University 4 The Pennsylvania State University 5 Mellanox 6 Technion

Abstract
RDMA technology enables a host to access the memory of a

remote host without involving the remote CPU, improving the

performance of distributed in-memory storage systems. Previ-

ous studies argued that RDMA suffers from scalability issues,

because the NIC’s limited resources are unable to simultane-

ously cache the state of all the concurrent network streams.

These concerns led to various software-based proposals to

reduce the size of this state by trading off performance.

We revisit these proposals and show that they no longer

apply when using newer RDMA NICs in rack-scale environ-

ments. In particular, we find that one-sided remote memory

primitives lead to better performance as compared to the pre-

viously proposed unreliable datagram and kernel-based stacks.

Based on this observation, we design and implement Storm,

a transactional dataplane utilizing one-sided read and write-

based RPC primitives. We show that Storm outperforms eRPC,

FaRM, and LITE by 3.3x, 3.6x, and 17.1x, respectively, on an

InfiniBand cluster with Mellanox ConnectX-4 NICs.

CCS Concepts • Networks → Network performance evalua-
tion; • Software and its engineering → Distributed systems
organizing principles;

Keywords RDMA, RPC, data structures

1 Introduction
RDMA is coming to data centers [3, 12, 21, 28, 47]. While

RDMA was previously limited to high-performance com-

puting environments with specialized Infiniband networks,

* Work done while at VMware

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made

or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of

this work owned by others than the author(s) must be honored. Abstracting

with credit is permitted. To copy otherwise, or republish, to post on servers or

to redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SYSTOR ’19, June 3–5, 2019, Haifa, Israel
© 2019 Copyright held by the owner/author(s). Publication rights licensed to

ACM.

ACM ISBN 978-1-4503-6749-3/19/06. . . $15.00

https://doi.org/10.1145/3319647.3325827

RDMA is now available in cheap Ethernet networks using

technologies such as RoCE [2] or iWARP [36]. The main

novelty of RDMA is one-sided operations, which permit an

application to directly read and write the memory of a remote

host without the involvement of the remote CPU. In theory,

one-sided operations are supposed to lower latency, improve

throughput, and reduce CPU consumption. However, prior

work shows that one-sided operations suffer from scalability

issues: with more than a few hosts, overheads in RDMA can

overwhelm the benefits that it provides [10, 16].

Our first contribution is a study of multiple generations of

RDMA NICs to understand how hardware evolution addresses

(or not) its scalability concerns. The conventional wisdom

is that one-sided RDMA performs poorly because of three

issues (§3). First, it requires the use of reliable connections,

which can exhaust the memory cache of the NIC. Second, one-

sided RDMA typically demands virtual-to-physical address

translation and memory-region protection metadata, which can

also exhaust the NIC cache. Third, one-sided RDMA can incur

many network round trips when an application wants to chase

pointers remotely in dynamic data structures.

In this paper, we reexamine these problems in light of new

and better hardware relative to prior work [10, 16, 42]. We find

that some of the problems are mitigated; they are no longer a

concern for rack-scale systems of up to 64 machines. Through

experiments, we demonstrate that newer hardware efficiently

supports a significantly larger number of connections than be-

fore, eschewing the scalability problem for rack-scale. Further-

more, we argue that connections actually help performance, as

they permit delegating congestion control to the hardware and

enable one-sided operations. Thus, systems should use reliable

connections as the only transport for RDMA communication

(§4). This is in stark contrast to some previous proposals, such

as HERD [15], FaSST [16], and eRPC [14], which call for

abandoning reliable connections with one-sided operations in

favor of the unreliable transport with send/receive operations.

The second issue (virtual address translation and protection

metadata) is mitigated in newer hardware but remains. While

future hardware might solve this problem altogether (with

larger NIC cache and better mechanisms to manage it), we

must still address it today. Prior solutions suggest the use of

huge pages to reduce region metadata [10] or access RDMA

97



SYSTOR ’19, June 3–5, 2019, Haifa, Israel Novakovic et al.

using physical addresses through a kernel interface [42]. These

approaches are effective but have some drawbacks: huge pages

are prone to fragmentation, while a kernel interface suffers

from syscall overheads and lock contention issues. In this

work, we propose enforcing contiguous memory allocation

and leveraging the support for physical segments in user-space

(§4): We find this approach to greatly reduce region metadata

without the concerns of fragmentation or kernel overheads.

Third issue (round trips to chase pointers) is fundamental

but arises only in certain workloads and data structures that

require pointer chasing. Prior solutions fall in two categories:

(1) replace one-sided operations with RPCs [14, 16], so that

the RPC handler at the remote host can chase the pointers and

send a reply in a single round trip, or (2) use data inlining

and perform larger one-sided reads [10]. In this work, we

adopt a new approach that performs better than prior solutions:

the system dynamically determines whether to use one-sided

operations or RPCs, depending on whether pointers need to

be chased, and then uses the best mechanism. We refer to this

hybrid scheme combining one-sided reads and write-based

RPCs as one-two-sided operations (§4). When using RPCs,

we employ one-sided write operations to transmit the RPC

requests and replies.

Based on our insights, we design and implement a high-

speed, transactional RDMA dataplane called Storm (§5). Storm

can effectively use one-sided operations in a rack-scale sys-

tem, despite prior concerns that they suffer from poor perfor-

mance [14, 16]. We evaluate Storm and compare it against

three state-of-the-art RDMA systems: FaSST/eRPC [14, 16],

FaRM [10], and LITE [42].

eRPC is designed to avoid one-sided operations altogether.

We show that Storm outperforms eRPC up to 3.3x by effec-

tively using one-sided operations for direct reads and RPCs.

Unlike two-sided reads, one-sided reads enable full-duplex

input-output operations per second(IOPS) rates; no CPU-NIC

interaction for processing replies. FaRM is designed and eval-

uated under an older generation of hardware and includes a

locking mechanism to share connections. Our measurements

show that this mechanism is no longer needed and produces

overhead with newer hardware; we thus improve FaRM by

removing the locking mechanism and our comparison refers

to this improved design. Our evaluation shows that Storm

outperforms the improved FaRM up to 3.6x. Our better perfor-

mance comes primarily from avoiding large reads in FaRM

and instead using fine-grained reads combined with our hybrid

one-two-sided operations. For smaller key-value pairs, FaRM

performs better compared to our FaRM measurements, which

are based on 128-byte data items (1KB bucket neighborhood

size). Smaller key-value pairs result in smaller bucket sizes,

leading to higher IOPS rates. Finally, LITE is designed to work

in the kernel; we improved LITE by extending it with support

for asynchronous operations; our comparison refers to this im-

proved scheme. Our evaluation shows that Storm outperforms

the improved LITE up to 17.1x. Our better performance comes

primarily from using user-space operations and a design that is

free of dependencies, while we find that LITE is bottlenecked

by the kernel overheads and sharing among the kernel and

user-level threads (§6).

To summarize, we make the following contributions:

• We perform an experimental study of three generations

of hardware to understand how its evolution addresses

(or not) each problem facing one-sided operations.

• We build a fast RDMA dataplane called Storm, which in-

corporates the lessons we learned from our experimental

study. Storm provides a well-understood transactional

API for manipulating remote data structures and allows

the developer to implement any such data structure using

a callback mechanism.

• We evaluate Storm and compare it against eRPC, and

improved versions of FaRM and LITE, dubbed Lock-

free_FaRM and Async_LITE. We show that Storm per-

forms well in a rack-scale setting with up to 64 servers

and outperforms eRPC, lock-free FARM, and Asynchro-

nous LITE by 3.3x, 3.6x, and 17.1x in throughput.

Ultimately, Storm refutes a widely held belief that one-sided

operations—the main novelty of RDMA—are inefficient due

to its scalability issues.

2 Background

2.1 Remote Direct Memory Access (RDMA)

RDMA allows applications to directly access memories of

remote hosts, with user-level and zero-copy operations for ef-

ficiency. Moreover, RDMA offloads the network stack to the

Network Interface Card (NIC), reducing CPU consumption.

RDMA was originally designed for specialized InfiniBand (IB)

networks used in high-performance computing [35]. More re-

cently, the IB transport has been adapted for Ethernet networks,

bringing RDMA to commodity datacenter networks [12, 47].

Memory management. To use RDMA, applications regis-

ter memory regions with the NIC, making them available

for remote access. During registration, the NIC driver pins

the memory pages and stores their virtual-to-physical address

translations in Memory Translation Tables (MTTs). The NIC

driver also records the memory region permissions in Mem-
ory Protection Tables (MPTs). When serving remote memory

requests, the NIC uses MTTs and MPTs to locate the pages

and check permissions. The MTTs and MPTs reside in system

memory, but the NIC caches them in SRAM. If the MTTs

and MPTs overflow the cache, they are accessed from main

memory via DMA/PCIe, which incurs overhead.

98



Storm: a fast transactional dataplane for remote data structures SYSTOR ’19, June 3–5, 2019, Haifa, Israel

Queue pairs. Applications issue RDMA requests via the IB

transport API, known as IB verbs. IB verbs use memory-

mapped control structures called Queue Pairs (QPs). Each QP

consists of a Send Queue (SQ) and a Receive Queue (RQ). Ap-

plications initiate RDMA operations by placing Work Queue

Entries (WQEs) in the SQ; when operations complete, appli-

cations are notified through the Completion Queue (CQ). This

asynchronous model allows applications to pipeline requests

and do other work while operations complete.

RDMA supports two modes of communication: one-sided

performs data transfers without the remote CPU; two-sided

is the traditional send-receive paradigm, which requires the

remote CPU to handle the requests. One-sided operations

(read/write) deliver higher throughput (i.e., IOPS), while

two-sided operations (send/recv) offer more flexibility as

they involve the remote CPU.

Transports. RDMA supports different transports; we focus

on two: Reliably Connected (RC) and Unreliable Datagram

(UD). The RC transport requires endpoints to be connected

and the connection to be associated with a QP. For each QP, the

system must keep significant state: QP metadata, congestion

control state [28, 47], in addition to WQEs, MTTs, and MPTs.

QP state amounts to ≈375B per connection [14]. UD does not

require connections; a single QP allows an endpoint to com-

municate with any target host. Thus, UD requires significantly

fewer QPs, which saves transport state. But UD has some

drawbacks: it is unreliable (requests can be lost), it does not

support one-sided operations, and it requires receive buffers to

be registered with the NIC, which impacts scalability.

2.2 Distributed in-memory systems using RDMA

Prior work shows how to build distributed in-memory storage

systems using RDMA [7, 10, 16, 26, 27, 38, 46]. Such storage

systems tend to have (i) high communication fan out; (ii) small

data item size, and (iii) moderate computational overheads.

Systems with these properties benefit from RDMA’s low-

latency and high IOPS rates. For example, in a transactional

store, clients issue transactions with many read/writes on dif-

ferent objects, where data is partitioned across the servers [6].

Using RDMA, clients can read/write data using reads and

writes or implement lightweight RPCs for that purpose, re-

ducing the end-to-end latency and improving throughput.

3 Motivation
3.1 Problem statement

Our main goal is to use RDMA efficiently and scalably in a

rack-scale setting. While some companies have deployments

with thousands of machines, the vast bulk of enterprises use

rack-scale deployments, consisting of one or a few racks with

up to 64 machines in total; that is our target environment. Prior

work has shown that RDMA-based distributed storage systems

do not scale well in these settings [10, 14, 42]. As we add more

machines and increase their memory, the amount of RDMA

state increases. For good performance, the active RDMA state

must be in the NIC’s SRAM cache, but this cache is small

and can be exhausted with a few remote peers [10]. When

that happens, RDMA state spills to CPU caches and main

memory, requiring expensive DMA operations over PCIe to

access it. PCIe latency adds 300-400ns on unloaded systems

to several microseconds on loaded systems [24, 32]. These

DMA overheads are exacerbated with transaction processing

workloads, which have high fan-out, fine-grained accesses.

3.2 Shortcomings of prior art

To mitigate this problem, several software solutions have been

proposed. We focus on three systems trying to address RDMA

scalability issues in software.

Systems using one-sided operations. Previously proposed

FaRM [9] and LITE [42] use one-sided operations and try

to reduce the number of QPs by sharing them across groups

of threads. To share, these systems use locks, but locking de-

grades throughput [10]. Also, FaRM uses large reads to reduce

the number of round-trips when performing lookups, limiting

maximum throughput.

Unreliable datagram transport. Another way to reduce QP

state is to use the UD transport, as in FaSST/eRPC [14, 16].

With UD, a thread uses just one QP to talk to all the machines

in the cluster. However, UD precludes the efficient one-sided

operations (read/write), requires application-level retrans-

mission and congestion control, all of which limit maximum

throughput (§6). Furthermore, we show that managing receive

queues in UD impacts scalability.

Kernel-space RDMA stacks. LITE [42] provides a kernel

interface for RPCs and remote memory mapping. Thus, LITE

uses physical addressing and eliminates MTT/MPT overhead

in the NIC, but it adds additional overhead due to frequent

system calls which are now somewhat more costly due to

recent kernel patches (i.e., KPTI, retpoline) [4]. Moreover,

LITE operations are blocking, which limits concurrency and

throughput. We extend LITE with asynchronous reads and

RPCs to improve its throughput. This version achieves 2×

higher throughput for a single thread (§6), but the maximum

IOPS with multiple threads remains small compared to RDMA

on a modern NIC. We find this occurs because of serialization

and lock contention in LITE.

3.3 Revisiting RDMA hardware capabilities

Systems like FaRM or LITE were designed for older gen-

erations of NICs with very limited processing and memory

resources. Their design choices (e.g., QP sharing and soft-

ware address translation) improve performance on such NICs

but underutilize the capabilities of newer hardware (CX4 and

99



SYSTOR ’19, June 3–5, 2019, Haifa, Israel Novakovic et al.

0

10

20

30

40

160 320 480 640 800 960 1120 1280

Re
m

ot
e 

re
ad

s 
/ u

s

Number of connections

2MB, 1MR (CX5) 4KB, 1024MR (CX5)

2MB, 1MR (CX3) 4KB, 1MR (CX5)

Figure 1. CX3 vs. CX5 comparison. CX5 provides better perfor-

mance even when using 4KB pages (as opposed to 2MB) and a larger

number of memory regions (1024MR). CX3 performs much worse

even with 2MB pages and 1MR.

CX5). Figure 1 tries to capture a significant performance gap

between CX3 and CX5 Mellanox RoCE NICs. It shows the

throughput per machine for a workload that performs random

64-byte remote reads on 20GB of memory (2MB page sizes).

For CX5, we show the performance when using 4KB pages

and also when MPTs are larger; 4KB,1024MR (CX5) uses

4KB pages and breaks the 20GB of buffer space into 1024

smaller RDMA memory regions (MR). On the X-axis we vary

the number of connections between the source and destination

servers. The RoCE hardware is described in Table 3.

Figure 1 shows that (i) CX5 significantly outperform CX3;

(ii) CX5 scales better with the number of connections than

CX3. We measure the throughput reductions going from 160

to 1280 connections to be: 83%, 42%, and 32% for CX3, CX4,

CX5, respectively (CX4 results omitted for clarity); (iii) MTT

and MPT remain a significant overhead with many memory re-

gions and large page counts. Finally, we find that CX5 through-

put becomes constant at around 10000 QP connections after

reaching zero cache hit rate. The constant throughput that we

measure is around 10 reqs/ μs, which is equal to the maximum

throughput a CX3 can provide (when there is no contention).

Next, we list a number of factors that drive the better perfor-

mance of modern NICs.

Larger caches, better cache management. CX4 and CX5

have larger caches (≈2MB) [14] for RDMA state, reducing the

number of PCIe/DMA operations on system memory. More-

over, these NICs can better utilize their cache space, with

improved prefetching, higher concurrency, and better cache

management [24]. Such optimizations allow a modern RDMA

NIC to deliver competitive throughput even when there are

virtually no cache hits on the NIC.

More and improved processing units. Modern NICs are

equipped with increasingly powerful Processing Units (PUs).

This allows NICs to issue more requests in parallel, which in

turn increases throughput and hides PCIe latency to fetch data

on cache misses [24]. This challenges the need for various

aggregation techniques and data layout optimizations used

previously. For a sufficient number of active QP connections

(each mapped to a single PU), a CX5 RoCE delivers close to

40 million reads per second (no contention).

The NIC’s ability to support more active connections allows

allocating exclusive connected QPs to threads, reducing QP

sharing overheads (lock contention) and enabling one-sided

operations.

Physical segment support. CX4 and CX5 support physical

segments with bound checks. While LITE on CX3 requires

kernel involvement for protection, we can now use physical

segments from user space. This mechanism bypasses virtual-

to-physical translation and reduces the MPT and MTT sizes.

This is important for hosts with large persistent-memory sys-

tems with tens of TBs to a PB of memory [29, 40]. In such sys-

tems, even 1GB pages could lead to large MTTs (e.g., 100TB

would require close to 1MB of MTT with 1GB pages). Phys-

ical segments support arbitrarily large memory regions with

just one MPT entry and no MTTs.

Efficient transport protocols. QPs in RC consume 375B per

connection [14], and RC requires many connections, which

can overwhelm the NIC caches. Modern NICs provide a new

Infiniband transport called Dynamically Connected Transport

(DCT) [1], which can share a QP connection across multiple

hosts, thereby reducing the amount of QP state. DC is not

available for RoCE and suffers from frequent reconnects which

diminish its purpose [16]. In this paper we focus on the RC

transport. As we show, RC scales well on clusters with up to

64 hosts.

3.4 Revisiting prior work on improved RDMA

A key contribution of this paper is to show that on modern

NICs, one-sided primitives can outperform alternatives for

moderate cluster sizes (tens of machines), even when the NIC

caches are being thrashed. For instance, on CX5 it takes on

the order of at least 2500 to 3800 concurrent connections for

reads performance to become as low as UD-based send/re-

ceive [14, 16]. We expect the break-even point to increase in

the future through the improvements mentioned in §3.3, and ar-

gue that one-sided operations are best for building low-latency,

high-throughput, and low-CPU utilization systems.

4 Design principles
We propose four design principles for RDMA-based in-memory

rack-scale systems:

100



Storm: a fast transactional dataplane for remote data structures SYSTOR ’19, June 3–5, 2019, Haifa, Israel

1. Leverage RC connections. As we mentioned, RC has a

scalability cost: it consumes more transport-level state than

UD, which can lead to NIC cache thrashing. We show that new

hardware—with larger caches, better cache management, and

more processing units—changes the trade-off in favor of RC in

rack-scale deployments. That is, the cost is more than offset by

the many benefits of RC: (1) RC allows lightweight one-sided

primitives (read/write) that have lower CPU utilization

and achieve higher IOPS; (2) RC offloads retransmissions

from the CPU to the NIC, and (3) RC offloads congestion

control as well. In addition to one-sided operations, we show

the benefit of RC connections for RPCs over UD, by using

RDMA write.

2. Minimize RDMA region metadata. While new hardware

addresses NIC cache state concerns for RC, another issue re-

mains: cache state for MPTs and MTTs. To address this prob-

lem, we use two techniques. First, we minimize the number

of registered RDMA memory regions by using a contiguous

memory allocator (CMA) [10]. Such an allocator requests

large chunks of memory from the kernel and manages small

object allocations. Thus, we only register a small number of

large chunks that we expand and shrink dynamically as the

application allocates/deallocates memory, minimizing MPTs.

The system could then use on-demand paging to repurpose

unused pages (though current support is limited to 4KB pages).

Dynamically expanding/shrinking a region can be achieved

with little downtime by leveraging Linux CMA. Once the re-

gion is expanded/shrunk, it has to be re-registered for RDMA.

Second, to reduce the memory translation table metadata

(MTTs), we propose using physical segments, a feature avail-

able in newer RDMA NICs such as CX5 [25]. Physical seg-

ments export physical memory with user-defined bounds with

no MTT overhead, and this feature is available in user-space.�

Physical segments were intended for single-tenant use; using

them in a host with many tenants requires care to avoid se-

curity issues when exposing physical memory. We propose

a solution to these issues, by mediating the registration of

physical segments by the kernel. This approach is secure and

imposes minimum overhead since kernel calls are off the data

path. Moreover, this approach is more efficient than using huge

pages (2MB or 1GB) to reduce the MTTs [10]. Huge pages

lead to fragmentation and waste memory [18, 34], and may

not suffice: for large memories with 100s of TBs, even 1GB

pages result in large MTTs. It is important to limit the num-

ber of physical segments, as they are allocated using Linux

CMA [23], and it may not be able to efficiently handle multiple

growing regions that need to be physically contiguous.

�Unlike LITE, which enforces protection in the kernel.

3. Try reads first, then switch to RPCs. One-sided reads

deliver high IOPS for simple lookups [10, 26, 27, 46]. How-

ever, they are less efficient to access data structures with cells

and pointers, such as skip lists, trees, and graphs, which require

pointer-chasing. Thus, prior work proposes two alternatives:

(1) use RPCs implemented with send/recv verbs [14, 16] or

(2) fetch more data at a time [10], arranging cells accordingly.

With new hardware, we show that the best approach is as

follows. First, use one-sided reads to fetch one cell at a time.

Our evaluation shows that combining cells and fetching more

data results in lower throughput. Second, if the one-sided

read reveals that we must chase pointers, switch to using

RPCs. We call this hybrid scheme one-two-sided operations.

Furthermore, we show that RPCs can be implemented effi-

ciently using one-sided writes.

4. Resize and/or cache. For remote reads to be effective,

data structure operations should require one round trip in the

common case. Otherwise, RPCs are proven to be more ef-

fective [16]. One round trip per operation is hard to achieve,

especially with pointer-linked data structures. This work pro-

poses a simple approach, which is to trade abundant memory

for fewer round trips with one-sided operations. There are two

ways to achieve this trade. First, clients could cache item ad-

dresses for future use, as in DrTM+H [43]. Second, for hash

tables, when RPC usage becomes excessive due to collision

induced pointer chasing, one should resize the data structure

to keep the occupancy low. We claim that the amount of con-

sumed memory is not significant, especially in the face of

high-density persistent memory technologies. For the latter,

we find that keeping the occupancy below 60-70% is sufficient

to emphasize the performance benefits of one-sided reads. Nev-

ertheless, we are looking into ways to repurpose the unused

portions of allocated memory.

5 Design and Implementation of Storm

Following our principles (§4), we design and implement Storm,

a fast RDMA dataplane for remote data structures. Storm is

designed to run at maximum IOPS rate of the NIC by using

RDMA primitives and by minimizing the active protocol state.

Storm exposes the familiar transactional API to the user.

Figure 2 shows the high-level design of Storm. Two inde-

pendent data paths process remote requests coming from the

local process: RPCs and one-sided reads (RR). The event loop

processes inbound requests and all event completions. The

Storm TX module provides a transactional API to the user by

leveraging the data structure API and the RPC/RR data paths

to execute transactions using a two-phase commit protocol.

101



SYSTOR ’19, June 3–5, 2019, Haifa, Israel Novakovic et al.

Storm dataplane

Remote data structure

RR

Event loop

RPC

Connection & memory 
management

Storm 
TX

RPC_handler lookup_start lookup_end

A
pp

lic
at

io
n

R
D

M
A

 n
et

w
or

k
Figure 2. Storm high-level design. Independent pipelines for remote

reads and RPCs. A single event loop processing all completions. Data

structure completely independent of the data plane. The developer

implements the data structure interface consisting of three callbacks.

5.1 Contiguous memory regions

To achieve best performance, we must manage memory effi-

ciently in RDMA. Earlier, Figure 1 showed that large MTTs

and MPTs leads to significant performance degradation, even

on modern hardware. Thus, Storm aims to allocate virtually

contiguous memory when possible to minimize the number

of registered RDMA regions. By doing so, Storm minimizes

the MPT state. In addition, Storm can allocate physically con-

tiguous memory and expose it as one physical segment [25],

requiring only a single MTT and one MPT entry. The physical

segment support requires a trusted entity to perform memory

registration, as this capability allows access to any part of the

machine’s physical memory. In Storm, we require from all

applications to register physical segments through the OS. The

overhead is negligible as registration is done off of the critical

path. With sufficiently large pages, physical segments may not

be necessary. Thus, in most of our experiments we do not use

them. However, future storage-class memory systems with PB

of memory will require support for physical segments.

5.2 Remote write-based RPCs

Storm leverages RDMA write with immediate operations to

send and receive messages. This primitive allows the client

to prepend a custom header to each message, which is useful

for communicating additional information about the sender

(e.g., process ID, coroutine ID, etc). More importantly, writes
with immediate enables scalable polling on the receiver; the

receiver receives a notification via a receive completion queue

for each received message. In addition, the IB verbs interface

also permits sharing a single completion queue across multiple

senders. Thus, the receiver does not have to poll on multiple

message buffers and multiple receive queues, improving scala-

bility and throughput.

Algorithm 1 Processing a read-set item in Storm TX

1: Input: Data structure object ID, key, size

2: Output: Data item from remote memory

3: success ← f alse
4: reдion_id,o f f set , size ← lookup_start(object_id,key)
5: if reдion_id � −1 then
6: bu f f er ← remote_read(reдion_id,o f f set , size)
7: success ← lookup_end(bu f f er ,object_id,key)

8: if success � true then
9: bu f f er ← rpc_send(object_id,key,READ)

10: success ← lookup_end(bu f f er ,object_id,key)

5.3 Storm remote data structure API

Storm exposes an intuitive and well-understood transactional

API for manipulating remote data structures (Table 2). Clients

add to the read/write sets and commit transactions at the end.

Storm’s event loop must be invoked periodically to process

event completions and execute requests coming from the other

nodes in the system.

Internally, Storm provides the following programming model

for remote data structures: Developers implements three call-

back functions and register them with the Storm dataplane (Ta-

ble 1). These functions are implemented as part of the remote

data structure. rpc_handler is used for lookups on the owner

(receiver) side. Locks and commits are also implemented in

rpc_handler. lookup_start is the remote lookup handler for

looking up a remote data structure’s metadata on the client

side. This metadata could be cached data structure addresses

or simply a guess for an object’s address based on a hash.

Algorithm 1 shows how the Storm dataplane on the client

side processes each request from the read set. It first invokes

lookup_start to get the RDMA region ID and offset where the

requested item may reside. If successful, the client looks up

the data at the returned address using a remote read.

When a lookup is finished, the client invokes lookup_end to

validate the returned data. If the data is not valid (e.g., the read

key does not match the requested key), the client issues an RPC.

lookup_end may decide to cache the address of the returned

object for future use. This depends on the remote data structure

implementation. Current RDMA technology does not allow

additional remote reads without hurting performance, but fu-

ture faster interconnects may change this trade-off. Invoking

lookup_end is necessary for lookups using remote reads, but it

102



Storm: a fast transactional dataplane for remote data structures SYSTOR ’19, June 3–5, 2019, Haifa, Israel

Table 1. Storm remote data structure API
API Description
rpc_handler local RPC handler

lookup_start get data item region ID and offset

lookup_end check if successful and cache

Table 2. Storm TX API
API Description
storm_eventloop process requests and completions

storm_start_tx start a new transaction

storm_add_to_read_set add an item to read set

storm_add_to_write_set add an item to write set

storm_tx_commit commit a transaction

storm_register_handler register a callback handler (Table 3)

is also invoked after every RPC lookup, so that the data struc-

ture can store the returned address for future use. lookup_end
may return false even after the RPC call if, for example, the

item does not exist.

5.4 Storm transactional protocol and API

Storm is capable of executing serializable transactions effi-

ciently. It implements a typical variation of the two-phase

commit protocol that is optimized for RDMA; throughout the

execution phase, Storm copies objects to local memory and

modifies them locally. Before committing, Storm client vali-

dates that no concurrent transaction has modified the read set.

This is done using remote reads, as Storm keeps track of the

remote offsets of each individual object in the read set. Finally,

Storm uses write-based RPCs to update the objects from the

write set and unlock them. Using RPCs for writes is a widely

accepted approach in RDMA-based transactional systems, as

it reduces implementation complexity [9] [43]. Storm uses

optimistic concurrency control [17], but locks the objects that

the transaction intends to write in the execution phase.

5.5 Example remote data structure: hash table

We use a hash table as a classical remote data structure exam-

ple. We modified the MICA hash table [20] to accommodate

for zero-copy transfers and extended it with handlers from

Table 1. Zero-copy is achieved through inlining of the required

metadata, including: key, lock and version. The rpc_handler is

compatible with Storm transactions and implements lookups,

lock acquisition, updates, inserts and deletes. To lookup remote

items, the clients call into lookup_start to get the address based

on the hash. The MICA hash table allows us to change buffer

allocation and specify the bucket size, which we leverage to

reduce hash collisions. Besides hash tables, Storm allows users

to implement other data structures, such as queues and trees,

and adjust the caching strategy accordingly.

5.6 Concurrency

Asynchronous scheduling of remote reads and RPCs is a dif-

ficult task. One could use callback continuations to pipeline

multiple remote operations concurrently. While this approach

has low overhead, prior work preferred using user-level threads

(i.e., coroutines) [16, 43]. Storm leverages coroutines to pro-

vide concurrency within individual threads, while offering

blocking semantics to the developers, reducing the complexity

of building applications on top of the Storm TX API.

6 Evaluation

6.1 Methodology

We use InfiniBand EDR to evaluate key design benefits of

Storm and point out the downsides of the previous proposals.

We first briefly explain our experimental methodology.

RDMA test-bed. We deployed and evaluated Storm on a 32-

node InfiniBand EDR (100Gbps) cluster. Each machine fea-

tures a Mellanox ConnectX-4 NIC, which has similar per-

formance characteristics to ConnectX-5. In addition, we have

access to three pairs of servers, a pair for each of the three most

recent ConnectX generations (CX3, CX4, CX5), all based on

RoCE (Table 3). In addition to Storm, we also deploy and run

eRPC and our emulated and improved version of FaRM. We

were not able to deploy LITE on this cluster, as we were not

allowed to patch the kernel. Instead, we ported and deployed

LITE on our CX5(RoCE) servers and projected the results to

our CX4(IB) platform.

Emulation. With Storm we are able to emulate RDMA clus-

ters larger than 32 nodes. To achieve that, Storm allocates the

same amount of resources that would exist in a real environ-

ment, including connections and registered RDMA buffers.

For example, each thread maintains a connection to each of its

"siblings" (i.e., threads with the same local ID) on the other

servers. By varying the number of QP connections and the

amount of message buffers used per pair of threads, we can

accurately emulate clusters of 3-4x larger sizes. The maximum

size is limited because of the amount of compute that is fixed.

Workloads. We use two workloads, described next.

• Key-value lookups uses Storm to look up random keys in the

Storm distributed hash table. Each bucket has a configurable

number of slots for data. Colliding items are kept in a linked

list when the bucket capacity is exceeded. When the hash table

is highly occupied, linked list traversals are needed to find indi-

vidual keys. Each data transfer, including the application-level

and RPC-level headers, is 128 bytes in size.

• TATP is a popular benchmark that simulates accesses to the

Home Location Register database used by a mobile carrier;

it is often used to compare the performance of in-memory

103



SYSTOR ’19, June 3–5, 2019, Haifa, Israel Novakovic et al.

Table 3. Different evaluation platforms used in this work

Platform: CPU/memory RDMA network Max. Machines

CX3 (RoCE)

Intel Xeon Gold 5120, 192GB DRAM

Mellanox ConnectX-3 Pro 40Gbps

2CX4 (RoCE) Mellanox ConnectX-4 VPI 100Gbps

CX5 (RoCE) Mellanox ConnectX-5 VPI 100Gbps

CX4 (IB) Intel Xeon E5-2660, 128GB DRAM Mellanox ConnectX-4 IB EDR 100Gbps 32

transaction processing systems. TATP uses Storm transactions

to commit its operations.

Baselines. We compare Storm to three different baseline sys-

tems: (i) eRPC, which is a system based on Unreliable Data-

grams (UD); (ii) FaRM, a system that leverages the Hopscotch

hashtable algorithm to minimize the number of round trips;

and (iii) LITE, a kernel-based RDMA system that onloads the

protection functionality to improve scalability. eRPC does not

allow for one-sided reads and is an RPC-only system. It relies

on UD, which is an unreliable InfiniBand transport requiring

onloaded congestion control and retransmissions. We emulate

FaRM by configuring Storm with FaRM parameters and by

rewriting the hash table algorithm. Also, to provide a fair com-

parison, we do not share QPs using locks as our NICs scale

better compared to the CX3, which have been used to evalu-

ate FaRM. Finally, we improved LITE by extending it with

support for asynchronous remote operations. Asynchronous

operations are important for IOPS-bound applications, such as

transactions.

6.2 Performance at rack-scale

We first evaluate Storm in isolation using the Key-value lookups
workload. Then, we compare Storm to the previously proposed

systems using the same workload, and finally we evaluate

TATP running on Storm.

6.2.1 Key-value lookups

Figure 3 shows the performance for three different Storm

setups: (i) Storm uses only RPCs to perform lookups. We

observe that the throughput stabilizes with the node count;

more nodes amortizes the polling overhead on the receiver.

(ii) Storm(oversub) enforces lower collision rate by allocat-

ing a larger hash table. With 32 nodes the throughput is 1.7x

higher compared to Storm. The throughput is not stable as we

scale because the collision rate is not the same for different

node counts, which translates to a higher or fewer number of

reads followed by RPCs (one-two-sided), impacting through-

put. Finally, (iii) Storm (perfect) assumes no RPCs on the data

path. Using only remote reads in Storm is possible through a

combination of memory oversubscription and caching of the

addresses of pointer-linked items. At 32 nodes, Storm (perfect)
outperforms Storm by 2.2x.

0

10

20

30

40

50

4 8 12 16 20 24 28 32
Pe

r-m
n 

lo
ok

up
s /

 u
se

c

Number of machines

Storm(perfect) Storm(oversub) Storm

Figure 3. Comparison of Storm configurations for a read-only key-

value workload. Average per-machine throughput on the Y-axis.

0

10

20

30

40

4 8 12 16

Pe
r-m

n 
lo

ok
up

s /
 u

se
c

Number of physical machines

Storm(oversub) eRPC (w/o CC)
eRPC Lock-free FARM
Async_LITE (projected)

Figure 4. Comparison of Storm, eRPC, FaRM, and LITE. eRPC

includes two versions, with and without congestion control.

6.2.2 Key-value lookups (comparison)

In this section we compare the performance of Storm, eRPC,

FaRM, and LITE using the Key-value lookups workload. Fig-

ure 4 presents the performance of all the systems running on

a real cluster with sizes varying from 4 to 16 machines. We

were not able to deploy eRPC on more than 16 nodes (hence

X-axis goes up to 16), as our NICs do not support sufficiently

104



Storm: a fast transactional dataplane for remote data structures SYSTOR ’19, June 3–5, 2019, Haifa, Israel

large receive queues. eRPC relies on a large-enough number of

registered receive buffers to prevent receiver-side packet loss.

For Storm, we only plot Storm(oversub). For eRPC, we study

a version with and one without congestion control, whereas

Storm(oversub) has hardware congestion control always en-

abled. For FaRM, we use our improved emulated version that

does not require QP locks, unlike the original FaRM imple-

mentation [10]. We emulate FaRM by configuring Storm with

the same parameters from the original FaRM paper [10]. A

key difference is that we use 128B items, which increases

the bucket size in FaRM and affects throughput. Finally, we

use our improved version of LITE that enables asynchronous

remote reads and RPCs (Async_LITE).

The key takeaways are: (1) Storm significantly outperforms

previous systems. This gap is mainly due to Storm’s ability

to take advantage of fine-grain remote reads. (2) Even though

eRPC does not use a reliable transport (no connections), the

throughput decreases with node count due to the increasing

overhead of posting onto the receive queue. This issue can

be fixed using "strided" RQ, which unfortunately is not avail-

able on our infrastructure. Strided RQ enables posting a sin-

gle RQ descriptor for a set of virtually contiguous buffers.

The lack of this feature also limits us to 16 nodes. This limit

holds only for eRPC and not for other evaluated systems. (3)

eRPC with no congestion control performs 1.53x better at 16

nodes than eRPC with application-level congestion control

enabled [14], indicating that relying on the implicit congestion

control provided by RC rather than the custom congestion

control at the application level may be beneficial. For larger

message sizes, the overhead of software-managed congestion

control may be less of an issue, as reported in eRPC (20%

bandwidth degradation for 8MB message size). The overhead

of onloaded congestion control will become more problem-

atic with decreasing network latencies and increasingly higher

IOPS rates (4) FaRM with its coarse-grained reads performs

worse than eRPC, suggesting that trading larger network trans-

fers (8x) per lookup for fewer network round trips comes with

performance penalty. For items smaller than 128 bytes, FaRM

achieves higher throughput, as this results in smaller bucket

transfers. Finally, (5) LITE performs the worst due to the ker-

nel complexity. We measured the throughput on two CX5

nodes only and projected these measurements to 16 nodes.

LITE is compute-bound and does not suffer from NIC cache

thrashing. Hence, we expect the throughput to be similar when

running on clusters with CX4.

6.2.3 TATP performance

On Figure 5 we study TATP for two Storm configurations.

Both configurations allocate the same amount of memory for

the data. The configurations are as follows: (1) Storm (over-
sub) uses an oversized hash table with bucket width of one,

0
2
4
6
8

10
12
14
16

4 8 12 16 20 24 28 32

Pe
r-m

n 
tr

an
sa

ct
io

ns
 / 

us
ec

Number of machines

Storm(oversub) Storm

Figure 5. TATP running on Storm. Lower occupancy of TATP hash

tables leads to better performance.

where each unsuccessful remote read lookup is followed by

an RPC (one-two-sided) to traverse the overflow chain. To

perform read-for-update and commit, Storm uses RPCs. The

oversized hash table results in fewer collisions and the ability

to successfully leverage remote reads most of the time; (2)

Storm always uses RPC to execute all application requests,

independent of the bucket size.

At 32 nodes, Storm (oversub) outperforms Storm by 1.49x.

The TATP workload has 16% of writes and 4% of inserts and

deletes. Writes, inserts and deletes require RPCs and thus the

improvement is not as significant as in the Key-value lookups
workload. Also, with increasing node count, the throughput

trend is similar to that of Storm in the Key-value lookups work-

load, and this is because of a larger fraction of RPCs. Again, as

we add nodes into the system, fewer cycles are wasted as the

event loop becomes more efficient in processing inbound re-

quests and managing the queues. Similar to eRPC, strided RQ

could be used in Storm to minimize the overheads associated

with managing the receive queue.

6.2.4 Impact on latency

Table 4 shows the unloaded round trip latencies of the eval-

uated systems on two of our CX4 platforms, InfiniBand and

RoCE. RoCE is generally known to have slightly higher la-

tency compared to InfiniBand. RPC latency for Storm and

eRPC is similar; both are optimized zero-copy implementa-

tions. FaRM requires transferring eight times larger blocks,

hence higher latency. LITE has the highest latency due to the

kernel overheads.

6.2.5 Physical segments

With the advent of extremely dense persistent memory tech-

nologies, we anticipate that future servers will be hosting hun-

dreds of TBs memory. For such large memory machines, the

105



SYSTOR ’19, June 3–5, 2019, Haifa, Israel Novakovic et al.

Platform Storm (RR) Storm (RPC) eRPC FaRM LITE

CX4 (IB) 1.8us 2.7us 2.7us 2.1us 5.8us

CX4 (RoCE) 2.8us 3.9us 3.6us 3us 6.4us

Table 4. Round-trip latencies for the various baselines and Storm.

RDMA region metadata can overwhelm the NIC caches, es-

pecially due to the MTT size. We added support for physical

segments in Storm and enforce kernel-level segment registra-

tion for security reasons. We use 4KB page sizes and compare

them to using Storm to export application memory as a phys-

ical segment. By using 4KB pages, we emulate a PB-scale

storage class memory with 1GB page size. Using physical

segments vs 4KB pages leads to 32% higher throughput.

6.3 Discussion: beyond rack-scale

In this section, we emulate larger clusters using our 32-node

CX4(IB) cluster by creating additional connections and allo-

cating additional buffers between each pair of machines [43].

Figure 6 shows the throughput as we scale the system from 32

to 128 virtual nodes. At 96 nodes and 20 threads per (physical)

node, the throughput drops by 1.57x when the NIC cache is

overwhelmed with state. Most of this state consists of connec-

tions, as we minimized the amount of MTT and MPT through

larger (2MB) pages and contiguous memory allocation.

We observe the following: (i) Up to 64 nodes, the throughput

is stable. 64 or fewer nodes is enough for most rack-scale de-

ployments, which are most common. (ii) by reducing the num-

ber of threads to 10 per server, the throughput is stable even at

128 nodes. A smaller number of threads leads to fewer initi-

ated connections, which minimizes the amount of transport-

level state. If an application requires more than 10 threads

per node, we envision a low-overhead, lock-free connection

sharing mechanism, where RDMA is exposed to only half

of the threads, which connect to their sibling threads on the

other nodes as usual. In addition, each such thread executes

RDMA requests on behalf of another thread on the same host.

This forwarding of requests can be achieved by establishing

a virtual channel (connection) between each pair of threads.

Finally, we are looking into memory management techniques

for Storm to reduce memory footprint.

7 Related Work
Other than the systems discussed in the previous sections,

there is a large body of work on RDMA-based key-value and

transaction processing systems [8, 13, 19, 26, 27, 39, 44],

distributed lock management [30, 45], DSM systems [31], PM

systems [5, 22, 37, 38, 41], and resource disaggregation [11,

33]. We discuss only a few below.

Other one-sided RDMA storage systems. Pilaf [26] uses a

self-verifying data structure to detect races and enforce syn-

chronization. This mechanism is directly applicable to Storm.

0

10

20

30

40

50

32 64 96 128

Pe
r-m

n 
lo

ok
up

s /
 u

se
c

Number of emulated machines

Storm(perfect)-20x Storm(perfect)-10x

Figure 6. Emulation of larger clusters using a 32-node cluster. 128

emulated machines requires 4x more connections and RDMA buffers.

Comparison of Storm(perfect) with 20 and 10 threads per machine.

NAM-DB [7, 46] leverages multi-versioning to minimize the

overhead of running distributed transactions. Storm does not

focus on optimizing the commit protocol and instead focuses

on improving the datapath. Crail [38] is based on Java but

provides competitive performance by cutting through the Java

stack (e.g., bypasses serialization). However, Crail is better

suited to data processing systems, unlike Storm, which is opti-

mized for fine-grain one-sided transfers.

Hybrid RDMA systems. RTX [43] provides key insights

about the choice of RDMA primitive for each phase of a two-

phase commit protocol using both UD and RC transports. Un-

like RTX, Storm’s focus is on scalability. Storm uses RC only

and takes advantage of high-throughput one-sided primitives

(even for RPC). RTX validates our conclusion that one-sided

operations achieve significantly higher IOPS compared to UD-

based RPC for messages larger than 64 bytes and still opts

to use UD for RPC due to scalability concerns. In this work,

contrary to common wisdom, we show this is not necessarily

a concern. UD-based systems can achieve higher than usual

transfer rates for smaller transfer sizes (below 64 bytes) be-

cause of inlining. For example, on our testbed eRPC achieves

close to 30 million operations per second for 32-byte message

size. Our workloads require 128-byte message size.

8 Conclusion
Our analysis of multiple generations of RDMA hardware

shows that modern RDMA hardware scales well on rack-scale

clusters. We leverage these hardware improvements in Storm,

a high-performance and transactional RDMA dataplane using

one-sided reads and write-based RPCs. Our detailed evaluation

of Storm compares it to FaSST/eRPC and improved versions

of FaRM and LITE, one-sided operations are effective for

rack-scale systems.

106



Storm: a fast transactional dataplane for remote data structures SYSTOR ’19, June 3–5, 2019, Haifa, Israel

References

[1] Openfabrics. dynamically connected transport. https:
//www.openfabrics.org/images/eventpresos/workshops2014/
DevWorkshop/presos/Monday/pdf/05_DC_Verbs.pdf, 2014.

[2] Supplement to infiniband architecture specification volume 1 release

1.2.2 annex a17: Rocev2 (ip routable roce). https://cw.infinibandta.
org/document/dl/7781, 2014.

[3] Amazon elastic fabric adapter (efa). https://lwn.net/Articles/773973/,
2018.

[4] Speculative Execution Exploit Performance Impact. https://access.
redhat.com/articles/3307751, 2019.

[5] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi, S. No-

vaković, A. Ramanathan, P. Subrahmanyam, L. Suresh, K. Tati,

R. Venkatasubramanian, and M. Wei. Remote regions: a simple ab-

straction for remote memory. In Proceedings of the 2018 USENIX
Annual Technical Conference (ATC), 2018.

[6] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload

Analysis of a Large-Scale Key-Value Store. In Proceedings of the
2012 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, 2012.

[7] C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and E. Zamanian. The

end of slow networks: It’s time for a redesign. In Proc. VLDB Endow.,
2016.

[8] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen. Fast and general dis-

tributed transactions using rdma and htm. In Proceedings of the Eleventh
European Conference on Computer Systems (EuroSys), 2016.

[9] A. Dragojevic, D. Narayanan, and M. Castro. RDMA Reads: To Use or

Not to Use? In IEEE Data Eng. Bull., 2017.

[10] A. Dragojevic, D. Narayanan, M. Castro, and O. Hodson. FaRM: Fast

Remote Memory. In Proceedings of the 11th Symposium on Networked
Systems Design and Implementation (NSDI), 2014.

[11] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin. Efficient

memory disaggregation with infiniswap. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2017.

[12] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn.

RDMA over Commodity Ethernet at Scale. In Proceedings of the ACM
SIGCOMM 2016 Conference, 2016.

[13] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. W. ur Rahman,

N. S. Islam, X. Ouyang, H. Wang, S. Sur, and D. K. Panda. Memcached

design on high performance rdma capable interconnects. In Proceedings
of the 2011 International Conference on Parallel Processing (ICPP),
2011.

[14] A. Kalia, M. Kaminsky, and D. Andersen. Datacenter rpcs can be general

and fast. In Proceedings of the 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2019.

[15] A. Kalia, M. Kaminsky, and D. G. Andersen. Design guidelines for

high performance rdma systems. In Proceedings of the 2016 USENIX
Conference on Usenix Annual Technical Conference (ATC), 2016.

[16] A. Kalia, M. Kaminsky, and D. G. Andersen. FaSST: Fast, Scalable and

Simple Distributed Transactions with Two-Sided (RDMA) Datagram

RPCs. In Proceedings of the 12th Symposium on Operating System
Design and Implementation (OSDI), 2016.

[17] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency

control. In Proceedings of the ACM Transactions on Database Systems.,
1981.

[18] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel. Coordinated

and efficient huge page management with ingens. In Proceedings of the
12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), 2016.

[19] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and

L. Zhang. Kv-direct: High-performance in-memory key-value store with

programmable nic. In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP), 2017.

[20] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A holistic

approach to fast in-memory key-value storage. In Proceedings of the 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2014.

[21] Y. Lu, G. Chen, B. Li, K. Tan, Y. Xiong, P. Cheng, J. Zhang, E. Chen,

and T. Moscibroda. Multi-path transport for RDMA in datacenters. In

Proceedings of the 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2018.

[22] Y. Lu, J. Shu, Y. Chen, and T. Li. Octopus: an rdma-enabled distributed

persistent memory file system. In Proceedings of the 2017 USENIX
Annual Technical Conference (ATC), 2017.

[23] LWN. A deep dive into CMA. https://lwn.net/Articles/486301/, 2012.

[24] Mellanox. Personal communication. 2018.

[25] Mellanox. Physical Address Memory Region. https://community.
mellanox.com/docs/DOC-2480, 2019.

[26] C. Mitchell, Y. Geng, and J. Li. Using one-sided rdma reads to build a

fast, cpu-efficient key-value store. In USENIX Conference on Annual
Technical Conference (ATC), 2013.

[27] C. Mitchell, K. Montgomery, L. Nelson, S. Sen, and J. Li. Balancing

CPU and network in the cell distributed b-tree store. In Proceedings of
the 2016 USENIX Annual Technical Conference (ATC), 2016.

[28] R. Mittal, V. T. Lam, N. Dukkipati, E. R. Blem, H. M. G. Wassel,

M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats. TIMELY:

RTT-based Congestion Control for the Datacenter. In Proceedings of
the ACM SIGCOMM 2015 Conference, 2015.

[29] T. P. Morgan. Intel shows off 3D XPoint memory performance. https:
//searchstorage.techtarget.com/definition/3D-XPoint, 2017.

[30] S. Narravula, A. Marnidala, A. Vishnu, K. Vaidyanathan, and D. K.

Panda. High performance distributed lock management services using

network-based remote atomic operations. In Proceedings of the 7th
IEEE International Symposium on Cluster Computing and the Grid
(CCGrid), 2007.

[31] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M. Oskin.

Latency-tolerant software distributed shared memory. In Proceedings of
the 2015 USENIX Annual Technical Conference (ATC), 2015.

[32] R. Neugebauer, G. Antichi, J. Zazo, Y. Audvevich, S. López-Buedo, and

A. Moore. Understanding pcie performance for end host networking. In

Proceedings of the ACM SIGCOMM 2018 Conference, 2018.

[33] V. Nitu, B. Teabe, A. Tchana, C. Isci, and D. Hagimont. Welcome to

zombieland: Practical and energy-efficient memory disaggregation in a

datacenter. In Proceedings of the 13th EuroSys Conference (EuroSys),
2018.

[34] A. Panwar, A. Prasad, and K. Gopinath. Making huge pages actually

useful. In Proceedings of the 23rd International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2018.

[35] G. F. Pfister. An introduction to the infiniband architecture. High
Performance Mass Storage and Parallel I/O, 2001.

[36] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia. A remote

direct memory access protocol specification (rfc 5040). 2007.

[37] Y. Shan, S.-Y. Tsai, and Y. Zhang. Distributed shared persistent memory.

In Proceedings of the 2017 Symposium on Cloud Computing (SoCC),
2017.

[38] P. Stuedi, A. Trivedi, J. Pfefferle, R. Stoica, B. Metzler, N. Ioannou, and

I. Koltsidas. Crail: A high-performance i/o architecture for distributed

data processing. In IEEE Data Eng. Bull., 2017.

107



SYSTOR ’19, June 3–5, 2019, Haifa, Israel Novakovic et al.

[39] M. Su, M. Zhang, K. Chen, Z. Guo, and Y. Wu. Rfp: When rpc is faster

than server-bypass with rdma. In Proceedings of the 12th European
Conference on Computer Systems (EuroSys), 2017.

[40] M. M. Swift. Towards o(1) memory. In Proceedings of the 16th Work-
shop on Hot Topics in Operating Systems (HotOS), 2017.

[41] A. Tavakkol, A. Kolli, S. Novakovic, K. Razavi, J. Gomez-Luna, H. Has-

san, C. Barthels, Y. Wang, M. Sadrosadati, S. Ghose, et al. Enabling

efficient rdma-based synchronous mirroring of persistent memory trans-

actions. In arXiv preprint arXiv:1810.09360, 2018.

[42] S.-Y. Tsai and Y. Zhang. LITE Kernel RDMA Support for Datacenter

Applications. In Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP), 2017.

[43] X. Wei, Z. Dong, R. Chen, and H. Chen. Deconstructing rdma-enabled

distributed transactions: Hybrid is better! In Proceedings of the 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2018.

[44] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-memory trans-

action processing using rdma and htm. In Proceedings of the 25th
Symposium on Operating Systems Principles (SOSP), 2015.

[45] D. Y. Yoon, M. Chowdhury, and B. Mozafari. Distributed lock manage-

ment with rdma: Decentralization without starvation. In Proceedings of
the 2018 International Conference on Management of Data (SIGMOD),
2018.

[46] E. Zamanian, C. Binnig, T. Harris, and T. Kraska. The end of a myth:

Distributed transactions can scale. In Proc. VLDB Endow., 2017.

[47] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,

S. Raindel, M. H. Yahia, and M. Zhang. Congestion Control for Large-

Scale RDMA Deployments. In Proceedings of the ACM SIGCOMM
2015 Conference, 2015.

108


