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ABSTRACT
Data-intensive systems are the backbone of today’s com-

puting and are responsible for shaping data centers. Over

the years, cloud providers have relied on three principles to

maintain cost-effective data systems: use disaggregation to

decouple scaling, use domain-specific computing to battle

waning laws, and use serverless to lower costs. Although

they work well individually, they fail to work in harmony:

an issue amplified by emerging data system workloads.

In this paper, we envision a distributed runtime to mitigate

current shortcomings. The distributed runtime has a tiered

access layer exposing declarative APIs, underpinned by a

stateful serverless runtime with a distributed task execution

model. It will be the narrow waist between data systems and

hardware. Users are oblivious to data location, concurrency,

disaggregation style, or even the hardware to do the comput-

ing. The underlying stateful serverless runtime transparently

evolves with novel data-center architectures, such as disag-

gregation and tightly-coupled clusters. We prototype Skadi

to showcase that the distributed runtime is practical.
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1 INTRODUCTION
Motivation. Today’s cloud has been deeply shaped by data-

intensive systems since the early 2000s when GFS [22] was

built to cope with the boom of big data. The volume of data

and the variety of data-intensive systems in the cloud in-

creased exponentially in the past two decades [1]. Many

data-intensive systems migrate to the cloud for instant in-

frastructure availability.

Nevertheless, it is incredibly challenging to design, deploy,

and run data systems fast enough at a reasonable cost, as

they commonly use deep storage and can be both compute-

intensive and memory-intensive [12, 67]. Over the years,

users, data system designers, and cloud vendors have worked

closely to keep running data systems cost-effective using

three principles: (1) use disaggregation to enable indepen-

dent resource scaling; (2) use domain-specific accelerators

to battle waning laws and improve computing efficiency; (3)

use serverless to lower costs and boost productivity.

These principles work well individually, but they fail to

work in harmony as each was proposed to solve a differ-

ent problem (explained next), an issue amplified by two re-

cent trends. The first trend is data systems integration in

which multiple data systems are deployed onto one pipeline

that jointly runs business logic, data management, HPC, and

ML [1, 4, 14, 26, 40, 46]. For example, BigQuery can run

data ingestion, extraction, analytics, and ML in one job [26].

The second trend is that giant model training has evolved

from using SPMD to MPMD over multiple highly-specialized

clusters [7, 12, 79]. Both workloads are commonly written

in high-level, declarative languages (e.g., SQL), and devel-

opers of these workloads are mostly oblivious to how the

underlying computation is carried out. For the best cluster

https://doi.org/10.1145/3593856.3595897
https://doi.org/10.1145/3593856.3595897
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Figure 1: Towards a distributed runtime. In (a), both user data systems and cloud services run on a logically-disaggregated cluster
using regular servers (e.g., cloud storage on the right is disaggregated from compute on the left). In (b), both user data systems and cloud services
partially migrate to stateless serverless. But some logic is still running on regular servers provisioned separately. In (c), we envision most data
systems and cloud services would run on top of the distributed runtime. DP is short for data processing systems.

cost-efficiency, both trends call for a close co-design of pro-

gramming models, runtime, networking, data-center hard-

ware, etc. To motivate this paper, we now discuss what the

above principles are, how they conflict, and why they fail to

accommodate emerging workloads.

First, cloud vendors adopt the disaggregation principle at

two levels in unison for a higher cluster efficiency. At the

logical level, vendors build separate resource pools using

regular servers [6, 44, 58, 67]. This decouples compute from

storage and enables each to scale independently to best fit

data system needs. However, the unit for scaling and run-

ning tasks is limited by the rigid server box [59]. Physical
disaggregation emerged to break servers into customized

devices, which often consist of a dominant resource like

DRAM or GPU along with ancillaries like DPU for network-

ing and control [28, 37, 45, 59, 60]. It can greatly improve

resource utilization. To date, co-designing data systems with

logical-disaggregation is battle-tested [6, 13, 44, 65, 67, 70].

But adapting data systems with physical-disaggregation is

still in its infancy [21, 37, 78].

The second principle is that vendors seek domain-specific

accelerators (DSA) to overcome limitations imposed by con-

ventional computing power such as CPUs [30] to keep up

with data systems’ increasing computing need [6, 10, 18, 33].

Unlike CPUs, DSAs have intrinsically different usage models.

Hence using a high-level framework [19, 53] is crucial to reap

their benefits. However, integrating DSAs with data systems

is a demanding but mostly one-time effort [6, 18, 33, 42, 56],

often creating "computing silos" in which DSAs are exclu-

sively owned by a data system or a service [6, 32]. Such

computing silos can be tightly-coupled clusters in which

DSAs are interconnected via high-speed interconnect, essen-

tially trading the scale of the cluster for the best performance.

This can result in suboptimal cluster utilization, which con-

flicts with the disaggregation and pooling principle. It also

makes sharing DSAs across distinct data systems more dif-

ficult as the DSAs are usually not exposed as-is but with

added-values.

Finally, the serverless principle further lowers cost by of-

fering a pay-as-you-go cost model over a reservation-based

one and boosts productivity by hiding distributed clusters.

However, existing commercial serverless lacks key features

that hinder its broad adoption [57]. In particular, compute

and storage are separated due to logical disaggregation. As

a result, functions usually bounce data via durable cloud

storage [36, 55]. Unfortunately, this is detrimental to data

systems that heavily rely on a fast caching layer for stor-

ing states and ephemeral data exchanged across functions.

This issue is more prominent with data systems integration.

In addition, existing serverless uses a CPU-centric model

in which users run general-purpose code on CPUs and or-

chestrate DSAs from there, and the auto-scaling of DSAs

is almost non-existent [54]. Due to these limitations, users

and even cloud services only partially migrate to commercial

serverless and still exchange data via slow durable storage,

as reflected in Figure 1b.

We believe the current ecosystem is not optimal for mod-

ern workloads written in high-level, declarative languages

and runningmultiple demanding data systems in one pipeline.

Ideally, we need a solution that simultaneously provides

all the benefits enabled by the above three principles. The

said solution must meet the following requirements: (a) has

an easy programming model that enjoys the pay-as-you-

go model for all the computing power used, (b) optimizes

for cluster cost-efficiency such as reducing data movement

whenever possible, and (c) transparently evolves with data-

center infrastructure. In this paper, we propose a distributed

runtime to close the gap.

Our work.We envision that the distributed runtime has
a tiered access layer that exposes declarative data-centric

and functionality-centric APIs, underpinned by a stateful

serverless runtime with a distributed task execution model

and flexible state management. It is the narrow waist be-

tween data systems and hardware (Figure 1c). As such, it

achieves the separation of concerns at scale: users apply

domain-specific declarative computation on data, oblivious



Skadi: Building a Distributed Runtime for Data Systems in Disaggregated Data Centers HotOS ’23, June 22–24, 2023, Providence, RI, USA

of data location, concurrency, consistency, disaggregation

style, or even the hardware used to do the compute. The

tiered access layer will map declarations onto a universal

sharded graph that dictates how data flow through com-

puting tasks. On the other hand, the underpinning stateful

serverless runtime will run the graph and ensure efficient

task scheduling and data movement, all the while transpar-

ently evolving with novel data-center architecture such as

disaggregation [59] and tightly-coupled clusters [23, 32].

We believe it will be in the cloud vendors’ best interest

to exploit the co-design of data systems, the distributed run-

time, and the data center infrastructure in order to achieve

the best cost-efficiency. As such, more user data systems and

cloud services would migrate to it. This necessitates the dis-

tributed runtime to host data systems with varied execution

models such as BSP [16, 31, 44, 75], task-parallel [35, 46, 49],

streaming [48, 76], graph [24, 25, 50], ML [2, 7, 11, 79], etc.

A flexible access layer and a stateful serverless runtime are

key to realizing this.

The access layer is proposed based on decades of research
and industry best practices on data flow. It consolidates frag-

mented domain-specific declarations onto one execution

graph. It does so using three tiers: a domain-specific declara-

tive tier, a logical graph tier, and a physical sharded graph tier.

Domain-specific ones include SQL [5], Graph [24], MapRe-

duce [16], ML [2, 11], etc. They are collectively lowered onto

one logical graph that hosts data-parallel, task-parallel, and

iterative patterns at once, using hardware-agnostic vertices

connected by directed edges. Lowering a logical graph to

a physical graph means possibly creating sharded vertices

along keyed edges and then mapping vertices to hardware

operators. Both the generated logical and physical graph

dictate how data flows through vertices. Crucially, they do

not specify when and who should execute the vertices, a task
delegated to Skadi’s stateful serverless runtime.

The tiering model mirrors Dryad [31, 73] and Naiad [48],

but differs in how vertices are built. We propose to use IR-

based primitives, in addition to predefined operators (e.g.,

handcraft kernels [31, 75] or wrapped utilities [34, 48]) to

build the vertices in the logical graph, akin to [14, 34]. A com-

mon IR enables graph-level optimizations such as op-fusing

across application domains, in contrast to being confined

within one domain [11]. This IR is data-centric, focusing on

expressing the flow of data and the scheduling of compute.

It is also functionality-centric: distributed runtime develop-

ers focus on functionalities intended, free from selecting

hardware or porting the same operator to multiple hard-

ware platforms, a task complicated by the emerging disag-

gregated [28, 37] and heterogeneous devices [8, 10, 33, 56]

with diverging hardware characteristics.

The stateful serverless runtime will execute the physi-
cal graph from the access layer. It resembles a task-parallel

system with a universal dynamic task execution API [35,

46, 49], based on which many distributed computing pat-

terns can be built, e.g., generic data-parallel and task-parallel

patterns, or the specialized MPMD pattern in giant model

training [7]. The stateful serverless runtime has a flexible

control plane and a fast data plane.

Its control plane is responsible for resource management,

task dispatching, auto-scaling, etc. For workloads with long-

running operators (e.g., analytics), it has a minor impact

on performance but determines utilization. For workloads

with frequent short operators (e.g., ML), it determines perfor-

mance. To this end, the control plane embraces data-centric

scheduling [27] for higher utilization, and forgoes the CPU-

centric model to better support short-lived operators on

heterogeneous hardware. If necessary, it could also integrate

gang-scheduling to support SPMD-style sub-graph [7].

The stateful serverless runtime’s data plane is critical as

data systems normally move a sizable amount of data to

finish a job, reflected in the data size per transfer, the cost

paid per transfer, and the number of transfers. One can cer-

tainly use direct hardware channels [15, 52] or novel net-

works [23, 43] for good performance. Above all, we believe a

fast caching layer with a standard format [3] is the bedrock

of our data plane. It enables stateful functions because it can

store states, external storage’s input/output, and ephemeral

results exchanged by functions within a job or across sys-

tems. Crucially, it has four benefits: (1) It decouples compute

from states so compute (i.e., vertices) can be opportunistically

migrated to where data reside to reduce data transfer. (2) A

shared format such as Arrow [3] enables functions running

on heterogeneous devices to exchange data without costly

data marshalling, hence reducing the cost paid per transfer.

(3) It unties data systems within an integrated pipeline using

futures [7, 46, 63], thus enabling pipeline parallelism across

system boundaries. Also, it can reduce the number of trips

to durable storage. (4) An optional highly-available caching

can replace lineage [46], adding another design trade-off.

We prototype Skadi to showcase that the distributed run-

time vision is practical. For the access layer, we build Flow-
Graph as the logical graph. Its vertices use a multi-level

IR [41] to express hardware-agnostic computation. Skadi

will lower the logical graph to a physical one. The physical

graph is a set of linked Python objects in our current im-

plementation. Skadi will parse the graph and then launch

tasks accordingly using stateful serverless runtime’s task

API. Skadi’s stateful serverless runtime is built based on

Ray. We first offload Ray’s control and data plane to DPUs

and extend its ownership table to enable Ray on physically-

disaggregated devices. To support short-lived ops, we eschew

Ray’s CPU-centric model and offload part of its control plane

(i.e., raylet) to heterogeneous devices. In addition, we add

another push-based future resolution scheme.
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2 DESIGN AND RESEARCH AGENDA
We prototype Skadi to demonstrate that the distributed run-

time idea is viable. This section will discuss Skadi’s initial

design, research agenda, and open questions.

2.1 Skadi Overview
We present Skadi’s architecture in Figure 2. Skadi enables

users to use only one runtime to express all of their pro-

grams as a part of this runtime. The input consists of sev-

eral domain-specific declarations like SQL statements and

ML training (e.g., a python script). Skadi maps the program

onto a logical graph in two steps: (1) invokes domain-specific

parsers to translate declarations onto a common graph called

FlowGraph, whose edges dictate how data flow and vertices

are built with either handcraft operators (ops in short) or

hardware-agnostic ops using MLIR [41]; (2) optimizes the

graph using predefined rules.

Skadi lowers the logical FlowGraph to a physical sharded

graph in two steps: (1) selects hardware backends for MLIR-

based ops using predefined rules; (b) decides a default degree

of parallelism for each vertex (subscripts in Figure 2), and

keyed edges with a default or user-supplied hashing scheme.

Skadi launches functions according to a given physical

graph using stateful serverless runtime’s task APIs (pseudo-

code in Figure 2). Functions exchange data either by value

or by reference. Before scheduling a function, the runtime

decides the preferred hardware based on memory locality,

device availability, network topology, etc. Once dispatched,

the function either runs immediately regardless of whether

the input is available or not, or waits until the input is ready.

The wait mode is possible because (a) Skadi’s control plane

supports data-centric scheduling [27] and (b) Skadi supports

pass-by-reference (i.e., futures) and has a flexible caching

layer. The caching layer has a simple KV API for memory

on regular servers, memory on heterogeneous devices, and

disaggregated memory. Crucially, the caching layer can hide

the location and movement of data.

Skadi handles failures in two ways: (1) re-executes the

graph using lineage [46], or (2) uses a reliable caching layer

with data replication [61] or EC [80]. Most existing data

systems use lineage since replication is costly [35, 46, 49, 75].

However, a reliable caching layer could be beneficial as it

helps reduce tail latency and potentially cost since the cost

of restarting jobs may offset the cost of extra storage.

2.2 Access Layer
The access layer, as its name suggests, grants data systems

access to the distributed runtime. Hence its top-level APIs

must be compatible with existing ecosystems. Fortunately,

it can reuse mature and open-source definitions, tools, and

compilers [14, 19, 34, 53, 75]. For example, FlowGraph is a
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Figure 2: Skadi Architecture. (1) The top half corresponds
to the tiered access layer. (2) Vertices are ops in blue boxes. (3) The
subscripts in physical graph vertices are the default parallelism degree.
Dashed edges are keyed using a certain hash. (4) The bottom half is
the stateful serverless runtime over a disaggregated infrastructure. If
Skadi is not deployed onto tightly-coupled clusters, systems running
there (e.g., [7]) can exchange data with Skadi via the caching layer. (5)
The caching layer exposes KV APIs. Ideally, it can manage memory
as plotted in red boxes, including host DRAM, HBM in heterogeneous
devices, and disaggregated memory. The caching layer is responsible
for managing data locations, replication, tiering policies etc. Users of
it only see KV APIs. (6) The pseudo-code on the right shows how to
launch functions in Ray to run the graph on the top. b, c, d1, and d2
are futures, Skadi has two protocols to resolve them.

classical data flow graph, similar to the ones in [31, 48]. We

also reuse cudf [52] ops, arrow ops [3], etc.

In building the access layer, we find a key challenge is

defining the IR to build hardware-agnostic computations

and further building FlowGraph with it. On the one hand, it

should be generic enough to build computing patterns data

systems commonly use. On the other hand, we should be

able to lower it onto multiple hardware backends (e.g., CPU,

FPGA, GPU, RMT [8]). No such IR exists today.

In response, we use MLIR [41], a compiler infrastructure

for creating domain-specific compilers. Recent works [7, 14,

34] showcase that MLIR is viable to build data systems. We

plan to use the open-source Daphne project [14] to build

our IR because it is the closest to an ideal access layer (see

Table 1): it has tiered declarative APIs, an MLIR-based DSL,

and abstractions like data frames, and matrix operators. Al-

though Daphne is versatile, its IR cannot be lowered onto

distinct hardware since it only supports a single LLVM back-

end. In order to build hardware-agnostic IR, we must add

more MLIR backends such as CIRCT for FPGA, or SPIR-V for
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GPU. This is an incredibly challenging task, which remains

an open research question.

A key benefit of using hardware-agnostic IR is that we can

lower a single piece of code to multiple hardware backends,

based on a set of predefined policies. For example, in order

to compare how an op performs on two platforms, the MLIR-

based vertex D in Figure 2 is lowered onto a GPU version

(D1) and an FPGA version (D2) for a direct comparison. This

certainly alleviates developers’ chore of implementing and

selecting the best hardware platform. In addition, should

we finalize the degree of parallelism during the compila-

tion time [75], or allow tuning [5] or graph reshaping [31]

during runtime is an open question. We leave such policy

explorations to future work.

2.3 Stateful Serverless Runtime
Skadi’s stateful serverless runtime is built based on Ray.

Given a physical graph description, we will launch tasks

(or actors) and pass futures using Ray’s vanilla distributed

task and KV APIs (code snippet in Figure 2).

2.3.1 Ray Primer. Ray is a task-parallel system originally

designed as a glue system to run RL workloads [46]. It has

taskAPIs for users to launch functions using stateless tasks or

stateful actors. Each Ray node runs a daemon process called

raylet which is responsible for running tasks and managing

a distributed object store called plasma. Functions exchange

data either by value or by futures. The future refers to data

residing in the distributed object store. Future resolution

uses an ownership protocol [24]. Due to the limited space,

we refer readers to [46, 68, 69, 81] for more details.

2.3.2 Design. We now describe how we overhaul Ray to

meet our goals described in Sec §1. We first offload raylet

to disaggregated devices (recall that such a device consists

of a DPU along with other dominant resources like GPU or

DRAM [28, 37, 45]). To access memory on heterogeneous

devices from Ray’s code using regular opaque pointers, we

modify Ray’s ownership table [69] also to include a device

ID and a handle for the device communication driver. Con-

sequently, the raylet on DPU also manages memory on its

companion devices. Combined, this results in the first gener-

ation of our stateful serverless runtime, capable of managing

physically-disaggregated devices and their memory (Gen-1

in Figure 3). We are building it using an in-house card that

has a BlueField DPU [51] and FPGAs.

The first generation can run most use cases efficiently. But

it is inefficient in running short-lived ML ops for two reasons.

First, it continues to use the CPU-centric model in which the

DPU orchestrates all resources of a device. The management

of tasks and pointers must go through the centralized DPU.

For instance, if two chained ops from the same physical

graph are deployed to two different FPGAs in Figure 3, their

communication (e.g., future resolution) must go through the

DPU. For short-lived ML ops, frequent trips to the DPU are

too costly. Second, Ray’s future resolution uses a pull-based

model in which the consumer pulls data from the producer

on demand [69]. This creates long stalls for short-lived ops.

Pathways [7] made a similar observation.

We propose a second generation (Gen-2 in Figure 3) to

solve these issues. It adopts three key changes. First, we es-

chew the CPU-centric model by deploying a device-specific

raylet to each heterogeneous device. Second, we add another

push-based model for future resolution, in which the pro-

ducer pushes data to the consumer proactively. Third, to

resolve potential out-of-memory and to increase availabil-

ity, we extend the caching layer to include disaggregated

memory. This generation embraces a device-centric model

and can run ops that call Ray APIs everywhere (e.g., ops

written in Figure 3’s style-2). We are still in the early stage

of designing a CUDA-based raylet for GPU. It’s intrinsically

more difficult to build a similar raylet for FPGA despite its

recent breakthroughs [38, 77].

3 RELATEDWORK
Numerous data systems have been built over the years, e.g.,

parallel processing [16, 31, 75], task-parallel [35, 46, 49],

large-scale ML [2, 7, 11, 79], OLAP [6, 44, 71, 72], graph

processing [24, 25, 50], streaming [9, 48, 76], etc. As we men-

tioned earlier, cloud providers have relied on three principles

to maintain cost-effective data systems. We compare these

efforts in Table 1 across five dimensions.

(1) API and IR.We categorize the systemAPIs into POSIX,

imperative, and declarative. Most emerging operat-

ing systems offer POSIX except FractOS [66], which

exposes an imperative abstraction for users to write

DAG manually. A similar approach is taken by several

serverless frameworks [17, 36, 63] and task-parallel

systems like CIEL [49], MODC [35], and Ray [46].
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API IR Serverless PhysDisagg. Integr.

Dist. OS [47] POSIX × × × ×
LegoOS [59] POSIX × × ✓ ×
FractOS [66] I-API × × ✓ ×
Molecule [17] I-API × stateless ✓ ×
Cloudburst [63] I-API × stateful × ×
Pocket [36] I-API × stateful × ×
CIEL [49] I-API × stateful × ×
Ray [46] I-API × stateful × ✓

MODC [35] I-API × stateful × ×
Pathways [7] D-API MLIR stateful × ×
OneFlow [74] D-API IR actor × ×
Dryad [31] D-API × stateless × ✓

Naiad [48] D-API × statelful × ✓

DPA [39] D-API × actor × ✓

DBOS [40, 62] D-API × stateful × ✓

TCR [20, 29] D-API IR × × ✓

DAPHNE [14] D-API MLIR stateless × ✓

Skadi D-API MLIR stateful ✓ ✓

Table 1: Related work comparisons. (1) I-API: imperative
APIs. D-API: declarative API. All non-POSIX systems support DAG.
(2) IR: the system uses an IR for hardware-agnostic computation. (3)
PhysDisagg: whether the system utilizes physically-disaggregated
devices for higher cluster efficiency. (4) Integr.: whether the system
runs integrated data system pipelines.

Skadi’s declarative API is inspired by early pioneers

such as Dryad [31], Naiad [48], and DAPHNE [14].

Compared to DAPHNE, Skadi differs in using MLIR

with multiple hardware backends to build hardware-

agnostic ops [14].

(2) Serverless Runtime. If a system supports stateless

functions, we believe it can support the serverless par-

adigm regardless of whether it was explicitly designed

so. Dryad [31] is a prominent example. We categorize

systems capable of storing function states as stateful

serverless runtime. Note that we explicitly differenti-

ate actor-based systems [39, 74], although generally

they are also stateful systems. Typical stateful run-

time include Cloudburst [63], Pocket [36, 64], etc. Path-

ways [7] has a data-flow system called Plaque which

has a data store similar to Ray’s plasma, so we also

mark it as a stateful runtime.

(3) Physical Disaggregation. Not many systems are ca-

pable of managing physically-disaggregated devices.

LegoOS [59] and FractOS [66] are two seminal works

in this space. LegoOS logically groups physically dis-

aggregated devices and exposes a single-system image

to run unmodified applications written for monolithic

kernels. FractOS eschews the CPU-centric model and

allows developers to write imperative DAGs to use

disaggregated devices. However, neither of them is de-

signed for running data-intensive systems. Some work

optimizes data systems running on disaggregated de-

vices [37, 78] but mostly targets a single system. Skadi

extends the Ray runtime to disaggregated devices by

offloading key components to DPUs.

(4) Data Systems Integration. In general, systems that

aim to runmixedworkloads need to provide an abstrac-

tion and a runtime. In Skadi’s case, we have the tiered

access layer and the stateful serverless runtime, respec-

tively. Prior works like DPA [39], DBOS [40, 62], and

DAPHNE [14] also target integrated data systems. For

example, DBOS can run serverless data system work-

loads on top of a distributed database. DPA provides

an actor-based programming model for building dis-

tributed query serving systems and a shared runtime

for running and scheduling actors. DAPHNE builds

its abstraction layer based on MLIR and develops a

runtime across heterogeneous devices from scratch.

4 CONCLUSION
Over the last two decades, cloud vendors have used three

principles to keep running demanding data systems cost-

effective: resource disaggregation, domain-specific comput-

ing, and serverless computing. Since each was proposed

to solve a different problem, these principles fail to work

harmoniously and oftentimes result in conflicts in practi-

cal deployments. This paper proposes a distributed runtime

to allow them to work in concert. The distributed runtime

will be the narrow waist between data systems and the data-

center infrastructure. It achieves the separation of concerns

at scale: users apply domain-specific declarative computation

on data, oblivious of data location, concurrency, consistency,

disaggregation style, or even the hardware used to do the

compute. Indeed, the envisioned distributed runtime and our

implementation Skadi is an overly ambitious take. We’ve

only scratched the surface in this paper and still have a long

way to achieve our ideals.
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