
Skadi: Building a Distributed Runtime for Data
Systems in Disaggregated Data Centers

Cunchen Hu
1,2 *

, Chenxi Wang
1,2
, Sa Wang

1,2
, Ninghui Sun

1,2
, Yungang Bao

1,2
,

Jieru Zhao
3
, Sanidhya Kashyap

4
, Pengfei Zuo

5
, Xusheng Chen

5
,

Liangliang Xu
5
, Qin Zhang

5
, Hao Feng

5
, Yizhou Shan

5

1
University of Chinese Academy of Sciences,

2
State Key Lab of Processors, ICT, CAS

3
Shanghai Jiao Tong University,

4
EPFL,

5
Huawei Cloud

ABSTRACT
Data-intensive systems are the backbone of today’s com-

puting and are responsible for shaping data centers. Over

the years, cloud providers have relied on three principles to

maintain cost-effective data systems: use disaggregation to

decouple scaling, use domain-specific computing to battle

waning laws, and use serverless to lower costs. Although

they work well individually, they fail to work in harmony:

an issue amplified by emerging data system workloads.

In this paper, we envision a distributed runtime to mitigate

current shortcomings. The distributed runtime has a tiered

access layer exposing declarative APIs, underpinned by a

stateful serverless runtime with a distributed task execution

model. It will be the narrow waist between data systems and

hardware. Users are oblivious to data location, concurrency,

disaggregation style, or even the hardware to do the comput-

ing. The underlying stateful serverless runtime transparently

evolves with novel data-center architectures, such as disag-

gregation and tightly-coupled clusters. We prototype Skadi

to showcase that the distributed runtime is practical.

ACM Reference Format:
Cunchen Hu, Chenxi Wang, Sa Wang, Ninghui Sun, Yungang Bao,

Jieru Zhao, Sanidhya Kashyap, Pengfei Zuo, Xusheng Chen, Lian-

gliang Xu, Qin Zhang, Hao Feng, Yizhou Shan. 2023. Skadi: Building

*Work done while intern at Huawei Cloud.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

HotOS ’23, June 22–24, 2023, Providence, RI, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0195-5/23/06.

https://doi.org/10.1145/3593856.3595897

a Distributed Runtime for Data Systems in Disaggregated Data Cen-

ters. In Workshop on Hot Topics in Operating Systems (HotOS ’23),
June 22–24, 2023, Providence, RI, USA. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/3593856.3595897

1 INTRODUCTION
Motivation. Today’s cloud has been deeply shaped by data-

intensive systems since the early 2000s when GFS [22] was

built to cope with the boom of big data. The volume of data

and the variety of data-intensive systems in the cloud in-

creased exponentially in the past two decades [1]. Many

data-intensive systems migrate to the cloud for instant in-

frastructure availability.

Nevertheless, it is incredibly challenging to design, deploy,

and run data systems fast enough at a reasonable cost, as

they commonly use deep storage and can be both compute-

intensive and memory-intensive [12, 67]. Over the years,

users, data system designers, and cloud vendors have worked

closely to keep running data systems cost-effective using

three principles: (1) use disaggregation to enable indepen-

dent resource scaling; (2) use domain-specific accelerators

to battle waning laws and improve computing efficiency; (3)

use serverless to lower costs and boost productivity.

These principles work well individually, but they fail to

work in harmony as each was proposed to solve a differ-

ent problem (explained next), an issue amplified by two re-

cent trends. The first trend is data systems integration in

which multiple data systems are deployed onto one pipeline

that jointly runs business logic, data management, HPC, and

ML [1, 4, 14, 26, 40, 46]. For example, BigQuery can run

data ingestion, extraction, analytics, and ML in one job [26].

The second trend is that giant model training has evolved

from using SPMD to MPMD over multiple highly-specialized

clusters [7, 12, 79]. Both workloads are commonly written

in high-level, declarative languages (e.g., SQL), and devel-

opers of these workloads are mostly oblivious to how the

underlying computation is carried out. For the best cluster

https://doi.org/10.1145/3593856.3595897
https://doi.org/10.1145/3593856.3595897

HotOS ’23, June 22–24, 2023, Providence, RI, USA C. Hu et al.

Object Store

Database

Cloud Services

Serverless
Runtime

DP

ML

App Apps Cloud Services DP ML Cloud Service

Server
Cluster

Disagg
DSAs

Disagg
DSAs

(a) Traditional Serverful (b) Emerging Serverless (c) Future Distributed Runtime

Distributed
Runtime

Access Layer

Stateful Serverless Caching

DP

Server
Cluster

Storage
Cluster

Storage
Cluster

Server
Cluster

Object StoreML

Storage
Cluster

Caching Layer

Data
Plane

Control
Plane

Distributed Task API

MR SQL Graph

Logical Graph

Physical Sharded Graph

Figure 1: Towards a distributed runtime. In (a), both user data systems and cloud services run on a logically-disaggregated cluster
using regular servers (e.g., cloud storage on the right is disaggregated from compute on the left). In (b), both user data systems and cloud services
partially migrate to stateless serverless. But some logic is still running on regular servers provisioned separately. In (c), we envision most data
systems and cloud services would run on top of the distributed runtime. DP is short for data processing systems.

cost-efficiency, both trends call for a close co-design of pro-

gramming models, runtime, networking, data-center hard-

ware, etc. To motivate this paper, we now discuss what the

above principles are, how they conflict, and why they fail to

accommodate emerging workloads.

First, cloud vendors adopt the disaggregation principle at

two levels in unison for a higher cluster efficiency. At the

logical level, vendors build separate resource pools using

regular servers [6, 44, 58, 67]. This decouples compute from

storage and enables each to scale independently to best fit

data system needs. However, the unit for scaling and run-

ning tasks is limited by the rigid server box [59]. Physical
disaggregation emerged to break servers into customized

devices, which often consist of a dominant resource like

DRAM or GPU along with ancillaries like DPU for network-

ing and control [28, 37, 45, 59, 60]. It can greatly improve

resource utilization. To date, co-designing data systems with

logical-disaggregation is battle-tested [6, 13, 44, 65, 67, 70].

But adapting data systems with physical-disaggregation is

still in its infancy [21, 37, 78].

The second principle is that vendors seek domain-specific

accelerators (DSA) to overcome limitations imposed by con-

ventional computing power such as CPUs [30] to keep up

with data systems’ increasing computing need [6, 10, 18, 33].

Unlike CPUs, DSAs have intrinsically different usage models.

Hence using a high-level framework [19, 53] is crucial to reap

their benefits. However, integrating DSAs with data systems

is a demanding but mostly one-time effort [6, 18, 33, 42, 56],

often creating "computing silos" in which DSAs are exclu-

sively owned by a data system or a service [6, 32]. Such

computing silos can be tightly-coupled clusters in which

DSAs are interconnected via high-speed interconnect, essen-

tially trading the scale of the cluster for the best performance.

This can result in suboptimal cluster utilization, which con-

flicts with the disaggregation and pooling principle. It also

makes sharing DSAs across distinct data systems more dif-

ficult as the DSAs are usually not exposed as-is but with

added-values.

Finally, the serverless principle further lowers cost by of-

fering a pay-as-you-go cost model over a reservation-based

one and boosts productivity by hiding distributed clusters.

However, existing commercial serverless lacks key features

that hinder its broad adoption [57]. In particular, compute

and storage are separated due to logical disaggregation. As

a result, functions usually bounce data via durable cloud

storage [36, 55]. Unfortunately, this is detrimental to data

systems that heavily rely on a fast caching layer for stor-

ing states and ephemeral data exchanged across functions.

This issue is more prominent with data systems integration.

In addition, existing serverless uses a CPU-centric model

in which users run general-purpose code on CPUs and or-

chestrate DSAs from there, and the auto-scaling of DSAs

is almost non-existent [54]. Due to these limitations, users

and even cloud services only partially migrate to commercial

serverless and still exchange data via slow durable storage,

as reflected in Figure 1b.

We believe the current ecosystem is not optimal for mod-

ern workloads written in high-level, declarative languages

and runningmultiple demanding data systems in one pipeline.

Ideally, we need a solution that simultaneously provides

all the benefits enabled by the above three principles. The

said solution must meet the following requirements: (a) has

an easy programming model that enjoys the pay-as-you-

go model for all the computing power used, (b) optimizes

for cluster cost-efficiency such as reducing data movement

whenever possible, and (c) transparently evolves with data-

center infrastructure. In this paper, we propose a distributed

runtime to close the gap.

Our work.We envision that the distributed runtime has
a tiered access layer that exposes declarative data-centric

and functionality-centric APIs, underpinned by a stateful

serverless runtime with a distributed task execution model

and flexible state management. It is the narrow waist be-

tween data systems and hardware (Figure 1c). As such, it

achieves the separation of concerns at scale: users apply

domain-specific declarative computation on data, oblivious

Skadi: Building a Distributed Runtime for Data Systems in Disaggregated Data Centers HotOS ’23, June 22–24, 2023, Providence, RI, USA

of data location, concurrency, consistency, disaggregation

style, or even the hardware used to do the compute. The

tiered access layer will map declarations onto a universal

sharded graph that dictates how data flow through com-

puting tasks. On the other hand, the underpinning stateful

serverless runtime will run the graph and ensure efficient

task scheduling and data movement, all the while transpar-

ently evolving with novel data-center architecture such as

disaggregation [59] and tightly-coupled clusters [23, 32].

We believe it will be in the cloud vendors’ best interest

to exploit the co-design of data systems, the distributed run-

time, and the data center infrastructure in order to achieve

the best cost-efficiency. As such, more user data systems and

cloud services would migrate to it. This necessitates the dis-

tributed runtime to host data systems with varied execution

models such as BSP [16, 31, 44, 75], task-parallel [35, 46, 49],

streaming [48, 76], graph [24, 25, 50], ML [2, 7, 11, 79], etc.

A flexible access layer and a stateful serverless runtime are

key to realizing this.

The access layer is proposed based on decades of research
and industry best practices on data flow. It consolidates frag-

mented domain-specific declarations onto one execution

graph. It does so using three tiers: a domain-specific declara-

tive tier, a logical graph tier, and a physical sharded graph tier.

Domain-specific ones include SQL [5], Graph [24], MapRe-

duce [16], ML [2, 11], etc. They are collectively lowered onto

one logical graph that hosts data-parallel, task-parallel, and

iterative patterns at once, using hardware-agnostic vertices

connected by directed edges. Lowering a logical graph to

a physical graph means possibly creating sharded vertices

along keyed edges and then mapping vertices to hardware

operators. Both the generated logical and physical graph

dictate how data flows through vertices. Crucially, they do

not specify when and who should execute the vertices, a task
delegated to Skadi’s stateful serverless runtime.

The tiering model mirrors Dryad [31, 73] and Naiad [48],

but differs in how vertices are built. We propose to use IR-

based primitives, in addition to predefined operators (e.g.,

handcraft kernels [31, 75] or wrapped utilities [34, 48]) to

build the vertices in the logical graph, akin to [14, 34]. A com-

mon IR enables graph-level optimizations such as op-fusing

across application domains, in contrast to being confined

within one domain [11]. This IR is data-centric, focusing on

expressing the flow of data and the scheduling of compute.

It is also functionality-centric: distributed runtime develop-

ers focus on functionalities intended, free from selecting

hardware or porting the same operator to multiple hard-

ware platforms, a task complicated by the emerging disag-

gregated [28, 37] and heterogeneous devices [8, 10, 33, 56]

with diverging hardware characteristics.

The stateful serverless runtime will execute the physi-
cal graph from the access layer. It resembles a task-parallel

system with a universal dynamic task execution API [35,

46, 49], based on which many distributed computing pat-

terns can be built, e.g., generic data-parallel and task-parallel

patterns, or the specialized MPMD pattern in giant model

training [7]. The stateful serverless runtime has a flexible

control plane and a fast data plane.

Its control plane is responsible for resource management,

task dispatching, auto-scaling, etc. For workloads with long-

running operators (e.g., analytics), it has a minor impact

on performance but determines utilization. For workloads

with frequent short operators (e.g., ML), it determines perfor-

mance. To this end, the control plane embraces data-centric

scheduling [27] for higher utilization, and forgoes the CPU-

centric model to better support short-lived operators on

heterogeneous hardware. If necessary, it could also integrate

gang-scheduling to support SPMD-style sub-graph [7].

The stateful serverless runtime’s data plane is critical as

data systems normally move a sizable amount of data to

finish a job, reflected in the data size per transfer, the cost

paid per transfer, and the number of transfers. One can cer-

tainly use direct hardware channels [15, 52] or novel net-

works [23, 43] for good performance. Above all, we believe a

fast caching layer with a standard format [3] is the bedrock

of our data plane. It enables stateful functions because it can

store states, external storage’s input/output, and ephemeral

results exchanged by functions within a job or across sys-

tems. Crucially, it has four benefits: (1) It decouples compute

from states so compute (i.e., vertices) can be opportunistically

migrated to where data reside to reduce data transfer. (2) A

shared format such as Arrow [3] enables functions running

on heterogeneous devices to exchange data without costly

data marshalling, hence reducing the cost paid per transfer.

(3) It unties data systems within an integrated pipeline using

futures [7, 46, 63], thus enabling pipeline parallelism across

system boundaries. Also, it can reduce the number of trips

to durable storage. (4) An optional highly-available caching

can replace lineage [46], adding another design trade-off.

We prototype Skadi to showcase that the distributed run-

time vision is practical. For the access layer, we build Flow-
Graph as the logical graph. Its vertices use a multi-level

IR [41] to express hardware-agnostic computation. Skadi

will lower the logical graph to a physical one. The physical

graph is a set of linked Python objects in our current im-

plementation. Skadi will parse the graph and then launch

tasks accordingly using stateful serverless runtime’s task

API. Skadi’s stateful serverless runtime is built based on

Ray. We first offload Ray’s control and data plane to DPUs

and extend its ownership table to enable Ray on physically-

disaggregated devices. To support short-lived ops, we eschew

Ray’s CPU-centric model and offload part of its control plane

(i.e., raylet) to heterogeneous devices. In addition, we add

another push-based future resolution scheme.

HotOS ’23, June 22–24, 2023, Providence, RI, USA C. Hu et al.

2 DESIGN AND RESEARCH AGENDA
We prototype Skadi to demonstrate that the distributed run-

time idea is viable. This section will discuss Skadi’s initial

design, research agenda, and open questions.

2.1 Skadi Overview
We present Skadi’s architecture in Figure 2. Skadi enables

users to use only one runtime to express all of their pro-

grams as a part of this runtime. The input consists of sev-

eral domain-specific declarations like SQL statements and

ML training (e.g., a python script). Skadi maps the program

onto a logical graph in two steps: (1) invokes domain-specific

parsers to translate declarations onto a common graph called

FlowGraph, whose edges dictate how data flow and vertices

are built with either handcraft operators (ops in short) or

hardware-agnostic ops using MLIR [41]; (2) optimizes the

graph using predefined rules.

Skadi lowers the logical FlowGraph to a physical sharded

graph in two steps: (1) selects hardware backends for MLIR-

based ops using predefined rules; (b) decides a default degree

of parallelism for each vertex (subscripts in Figure 2), and

keyed edges with a default or user-supplied hashing scheme.

Skadi launches functions according to a given physical

graph using stateful serverless runtime’s task APIs (pseudo-

code in Figure 2). Functions exchange data either by value

or by reference. Before scheduling a function, the runtime

decides the preferred hardware based on memory locality,

device availability, network topology, etc. Once dispatched,

the function either runs immediately regardless of whether

the input is available or not, or waits until the input is ready.

The wait mode is possible because (a) Skadi’s control plane

supports data-centric scheduling [27] and (b) Skadi supports

pass-by-reference (i.e., futures) and has a flexible caching

layer. The caching layer has a simple KV API for memory

on regular servers, memory on heterogeneous devices, and

disaggregated memory. Crucially, the caching layer can hide

the location and movement of data.

Skadi handles failures in two ways: (1) re-executes the

graph using lineage [46], or (2) uses a reliable caching layer

with data replication [61] or EC [80]. Most existing data

systems use lineage since replication is costly [35, 46, 49, 75].

However, a reliable caching layer could be beneficial as it

helps reduce tail latency and potentially cost since the cost

of restarting jobs may offset the cost of extra storage.

2.2 Access Layer
The access layer, as its name suggests, grants data systems

access to the distributed runtime. Hence its top-level APIs

must be compatible with existing ecosystems. Fortunately,

it can reuse mature and open-source definitions, tools, and

compilers [14, 19, 34, 53, 75]. For example, FlowGraph is a

A B

C
D E

Logical Graph

MLIR
ops

Physical Sharded Graph

Cm

Bn

D2

D1

cudf
ops

misc
ops

Graph-level Opt

worker

Control (raylet)

worker

Local Object Store

 Launch Physical Graph
b = [B.remote() for i in range(n)]
c = [C.remote() for i in range(m)]
d1 = [D1-gpu.remote(b[], c[])]
d2 = [D2-fpga.remote(b[], c[])]
e = E.remote(d1 + d2)

FPGA
DRAM

DPU1
raylet

Disaggregated Memory

GPU1 GPU2

Disagg. Device

Centralized
Scheduler

Distributed Task APIs

Server

raylet

DPU
raylet

Obj
Store

DPU2

Highly
Customized

Clusters

Cloud
Durable
Storage

E

SQL Graph ML

An

Figure 2: Skadi Architecture. (1) The top half corresponds
to the tiered access layer. (2) Vertices are ops in blue boxes. (3) The
subscripts in physical graph vertices are the default parallelism degree.
Dashed edges are keyed using a certain hash. (4) The bottom half is
the stateful serverless runtime over a disaggregated infrastructure. If
Skadi is not deployed onto tightly-coupled clusters, systems running
there (e.g., [7]) can exchange data with Skadi via the caching layer. (5)
The caching layer exposes KV APIs. Ideally, it can manage memory
as plotted in red boxes, including host DRAM, HBM in heterogeneous
devices, and disaggregated memory. The caching layer is responsible
for managing data locations, replication, tiering policies etc. Users of
it only see KV APIs. (6) The pseudo-code on the right shows how to
launch functions in Ray to run the graph on the top. b, c, d1, and d2
are futures, Skadi has two protocols to resolve them.

classical data flow graph, similar to the ones in [31, 48]. We

also reuse cudf [52] ops, arrow ops [3], etc.

In building the access layer, we find a key challenge is

defining the IR to build hardware-agnostic computations

and further building FlowGraph with it. On the one hand, it

should be generic enough to build computing patterns data

systems commonly use. On the other hand, we should be

able to lower it onto multiple hardware backends (e.g., CPU,

FPGA, GPU, RMT [8]). No such IR exists today.

In response, we use MLIR [41], a compiler infrastructure

for creating domain-specific compilers. Recent works [7, 14,

34] showcase that MLIR is viable to build data systems. We

plan to use the open-source Daphne project [14] to build

our IR because it is the closest to an ideal access layer (see

Table 1): it has tiered declarative APIs, an MLIR-based DSL,

and abstractions like data frames, and matrix operators. Al-

though Daphne is versatile, its IR cannot be lowered onto

distinct hardware since it only supports a single LLVM back-

end. In order to build hardware-agnostic IR, we must add

more MLIR backends such as CIRCT for FPGA, or SPIR-V for

Skadi: Building a Distributed Runtime for Data Systems in Disaggregated Data Centers HotOS ’23, June 22–24, 2023, Providence, RI, USA

DPUdispatch ops
op1()

(a) Pull Data

(b) Push Data

Disaggregated Memory

GPU R

spill/redundancy

FPGA
R

DPU

GPU R
op2()

R

 Style 1
op2(f1, f2) {
 tmp = sum(f1, f2)
 ref = Put(tmp)
 return ref
}
 Style 2
op2() {
 a = sum(f1, f2)
 return a
}

Hetero. Ownership Table
[*ID, *Owner, *Value, …]
[Locations, DeviceID, DeviceHandle]

Gen-1 Gen-2

FPGA

Figure 3: Stateful serverless runtime details. (1) We omit
regular servers and show two physically-disaggregated devices, on
top of which runs a modified raylet (the box with R). (2) We make
Ray’s ownership table heterogeneity-aware by adding a device ID and
a handle to the device driver (DeviceID and DeviceHandle). (3) Two
coding styles differ in whether the op uses opaque Ray pointers or
futures not passed as parameters. Running coding style 2 requires a
raylet inside heterogeneous devices.

GPU. This is an incredibly challenging task, which remains

an open research question.

A key benefit of using hardware-agnostic IR is that we can

lower a single piece of code to multiple hardware backends,

based on a set of predefined policies. For example, in order

to compare how an op performs on two platforms, the MLIR-

based vertex D in Figure 2 is lowered onto a GPU version

(D1) and an FPGA version (D2) for a direct comparison. This

certainly alleviates developers’ chore of implementing and

selecting the best hardware platform. In addition, should

we finalize the degree of parallelism during the compila-

tion time [75], or allow tuning [5] or graph reshaping [31]

during runtime is an open question. We leave such policy

explorations to future work.

2.3 Stateful Serverless Runtime
Skadi’s stateful serverless runtime is built based on Ray.

Given a physical graph description, we will launch tasks

(or actors) and pass futures using Ray’s vanilla distributed

task and KV APIs (code snippet in Figure 2).

2.3.1 Ray Primer. Ray is a task-parallel system originally

designed as a glue system to run RL workloads [46]. It has

taskAPIs for users to launch functions using stateless tasks or

stateful actors. Each Ray node runs a daemon process called

raylet which is responsible for running tasks and managing

a distributed object store called plasma. Functions exchange

data either by value or by futures. The future refers to data

residing in the distributed object store. Future resolution

uses an ownership protocol [24]. Due to the limited space,

we refer readers to [46, 68, 69, 81] for more details.

2.3.2 Design. We now describe how we overhaul Ray to

meet our goals described in Sec §1. We first offload raylet

to disaggregated devices (recall that such a device consists

of a DPU along with other dominant resources like GPU or

DRAM [28, 37, 45]). To access memory on heterogeneous

devices from Ray’s code using regular opaque pointers, we

modify Ray’s ownership table [69] also to include a device

ID and a handle for the device communication driver. Con-

sequently, the raylet on DPU also manages memory on its

companion devices. Combined, this results in the first gener-

ation of our stateful serverless runtime, capable of managing

physically-disaggregated devices and their memory (Gen-1

in Figure 3). We are building it using an in-house card that

has a BlueField DPU [51] and FPGAs.

The first generation can run most use cases efficiently. But

it is inefficient in running short-lived ML ops for two reasons.

First, it continues to use the CPU-centric model in which the

DPU orchestrates all resources of a device. The management

of tasks and pointers must go through the centralized DPU.

For instance, if two chained ops from the same physical

graph are deployed to two different FPGAs in Figure 3, their

communication (e.g., future resolution) must go through the

DPU. For short-lived ML ops, frequent trips to the DPU are

too costly. Second, Ray’s future resolution uses a pull-based

model in which the consumer pulls data from the producer

on demand [69]. This creates long stalls for short-lived ops.

Pathways [7] made a similar observation.

We propose a second generation (Gen-2 in Figure 3) to

solve these issues. It adopts three key changes. First, we es-

chew the CPU-centric model by deploying a device-specific

raylet to each heterogeneous device. Second, we add another

push-based model for future resolution, in which the pro-

ducer pushes data to the consumer proactively. Third, to

resolve potential out-of-memory and to increase availabil-

ity, we extend the caching layer to include disaggregated

memory. This generation embraces a device-centric model

and can run ops that call Ray APIs everywhere (e.g., ops

written in Figure 3’s style-2). We are still in the early stage

of designing a CUDA-based raylet for GPU. It’s intrinsically

more difficult to build a similar raylet for FPGA despite its

recent breakthroughs [38, 77].

3 RELATEDWORK
Numerous data systems have been built over the years, e.g.,

parallel processing [16, 31, 75], task-parallel [35, 46, 49],

large-scale ML [2, 7, 11, 79], OLAP [6, 44, 71, 72], graph

processing [24, 25, 50], streaming [9, 48, 76], etc. As we men-

tioned earlier, cloud providers have relied on three principles

to maintain cost-effective data systems. We compare these

efforts in Table 1 across five dimensions.

(1) API and IR.We categorize the systemAPIs into POSIX,

imperative, and declarative. Most emerging operat-

ing systems offer POSIX except FractOS [66], which

exposes an imperative abstraction for users to write

DAG manually. A similar approach is taken by several

serverless frameworks [17, 36, 63] and task-parallel

systems like CIEL [49], MODC [35], and Ray [46].

HotOS ’23, June 22–24, 2023, Providence, RI, USA C. Hu et al.

API IR Serverless PhysDisagg. Integr.

Dist. OS [47] POSIX × × × ×
LegoOS [59] POSIX × × ✓ ×
FractOS [66] I-API × × ✓ ×
Molecule [17] I-API × stateless ✓ ×
Cloudburst [63] I-API × stateful × ×
Pocket [36] I-API × stateful × ×
CIEL [49] I-API × stateful × ×
Ray [46] I-API × stateful × ✓

MODC [35] I-API × stateful × ×
Pathways [7] D-API MLIR stateful × ×
OneFlow [74] D-API IR actor × ×
Dryad [31] D-API × stateless × ✓

Naiad [48] D-API × statelful × ✓

DPA [39] D-API × actor × ✓

DBOS [40, 62] D-API × stateful × ✓

TCR [20, 29] D-API IR × × ✓

DAPHNE [14] D-API MLIR stateless × ✓

Skadi D-API MLIR stateful ✓ ✓

Table 1: Related work comparisons. (1) I-API: imperative
APIs. D-API: declarative API. All non-POSIX systems support DAG.
(2) IR: the system uses an IR for hardware-agnostic computation. (3)
PhysDisagg: whether the system utilizes physically-disaggregated
devices for higher cluster efficiency. (4) Integr.: whether the system
runs integrated data system pipelines.

Skadi’s declarative API is inspired by early pioneers

such as Dryad [31], Naiad [48], and DAPHNE [14].

Compared to DAPHNE, Skadi differs in using MLIR

with multiple hardware backends to build hardware-

agnostic ops [14].

(2) Serverless Runtime. If a system supports stateless

functions, we believe it can support the serverless par-

adigm regardless of whether it was explicitly designed

so. Dryad [31] is a prominent example. We categorize

systems capable of storing function states as stateful

serverless runtime. Note that we explicitly differenti-

ate actor-based systems [39, 74], although generally

they are also stateful systems. Typical stateful run-

time include Cloudburst [63], Pocket [36, 64], etc. Path-

ways [7] has a data-flow system called Plaque which

has a data store similar to Ray’s plasma, so we also

mark it as a stateful runtime.

(3) Physical Disaggregation. Not many systems are ca-

pable of managing physically-disaggregated devices.

LegoOS [59] and FractOS [66] are two seminal works

in this space. LegoOS logically groups physically dis-

aggregated devices and exposes a single-system image

to run unmodified applications written for monolithic

kernels. FractOS eschews the CPU-centric model and

allows developers to write imperative DAGs to use

disaggregated devices. However, neither of them is de-

signed for running data-intensive systems. Some work

optimizes data systems running on disaggregated de-

vices [37, 78] but mostly targets a single system. Skadi

extends the Ray runtime to disaggregated devices by

offloading key components to DPUs.

(4) Data Systems Integration. In general, systems that

aim to runmixedworkloads need to provide an abstrac-

tion and a runtime. In Skadi’s case, we have the tiered

access layer and the stateful serverless runtime, respec-

tively. Prior works like DPA [39], DBOS [40, 62], and

DAPHNE [14] also target integrated data systems. For

example, DBOS can run serverless data system work-

loads on top of a distributed database. DPA provides

an actor-based programming model for building dis-

tributed query serving systems and a shared runtime

for running and scheduling actors. DAPHNE builds

its abstraction layer based on MLIR and develops a

runtime across heterogeneous devices from scratch.

4 CONCLUSION
Over the last two decades, cloud vendors have used three

principles to keep running demanding data systems cost-

effective: resource disaggregation, domain-specific comput-

ing, and serverless computing. Since each was proposed

to solve a different problem, these principles fail to work

harmoniously and oftentimes result in conflicts in practi-

cal deployments. This paper proposes a distributed runtime

to allow them to work in concert. The distributed runtime

will be the narrow waist between data systems and the data-

center infrastructure. It achieves the separation of concerns

at scale: users apply domain-specific declarative computation

on data, oblivious of data location, concurrency, consistency,

disaggregation style, or even the hardware used to do the

compute. Indeed, the envisioned distributed runtime and our

implementation Skadi is an overly ambitious take. We’ve

only scratched the surface in this paper and still have a long

way to achieve our ideals.

ACKNOWLEDGEMENT
We thank anonymous reviewers for their valuable feedback.

We also thank Xiaoyang Deng, Rongfeng He, Zeke Wang,

and Xiaosong Lei for their insightful discussions. This work

is supported in part by the National Key Research and De-

velopment Plan of China (No. 2022YFB4500400), the Strate-

gic Priority Research Program of Chinese Academy of Sci-

ences under grant number XDA0320000 and XDA0320300,

the National Natural Science Foundation of China (Grant No.

62090022 and 62172388), and Youth Innovation Promotion

Association of Chinese Academy of Sciences (2020105).

Skadi: Building a Distributed Runtime for Data Systems in Disaggregated Data Centers HotOS ’23, June 22–24, 2023, Providence, RI, USA

REFERENCES
[1] a16z. Emerging Architectures for Modern Data Infrastructure.

https://a16z.com/2020/10/15/emerging-architectures-for-modern-

data-infrastructure/.

[2] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,

M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J.,

Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasude-

van, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X. TensorFlow: A

System for Large-Scale Machine Learning. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation
(2016).

[3] Apache Arrow. https://arrow.apache.org/.

[4] Armbrust, M., Ghodsi, A., Xin, R., and Zaharia, M. Lakehouse: a

new generation of open platforms that unify data warehousing and

advanced analytics. In Proceedings of CIDR (2021).

[5] Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K.,

Meng, X., Kaftan, T., Franklin, M. J., Ghodsi, A., and Zaharia, M.

Spark SQL: Relational Data Processing in Spark. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data
(2015).

[6] Armenatzoglou, N., Basu, S., Bhanoori, N., Cai, M., Chainani,

N., Chinta, K., Govindaraju, V., Green, T. J., Gupta, M., Hillig,

S., Hotinger, E., Leshinksy, Y., Liang, J., McCreedy, M., Nagel, F.,

Pandis, I., Parchas, P., Pathak, R., Polychroniou, O., Rahman, F.,

Saxena, G., Soundararajan, G., Subramanian, S., and Terry, D.

Amazon Redshift Re-Invented. In Proceedings of the 2022 International
Conference on Management of Data (2022).

[7] Barham, P., Chowdhery, A., Dean, J., Ghemawat, S., Hand, S., Hurt,

D., Isard,M., Lim, H., Pang, R., Roy, S., et al. Pathways: Asynchronous

distributed dataflow for ML. Proceedings of Machine Learning and
Systems (2022).

[8] Bosshart, P., Gibb, G., Kim, H.-S., Varghese, G., McKeown, N., Iz-

zard, M., Mujica, F., and Horowitz, M. Forwarding Metamorphosis:

Fast Programmable Match-Action Processing in Hardware for SDN.

In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM
(2013).

[9] Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., and

Tzoumas, K. Apache flink: Stream and batch processing in a single

engine. The Bulletin of the Technical Committee on Data Engineering
(2015).

[10] Caulfield, A. M., Chung, E. S., Putnam, A., Angepat, H., Fowers,

J., Haselman, M., Heil, S., Humphrey, M., Kaur, P., Kim, J.-Y., Lo,

D., Massengill, T., Ovtcharov, K., Papamichael, M., Woods, L.,

Lanka, S., Chiou, D., and Burger, D. A Cloud-Scale Acceleration

Architecture. In The 49th Annual IEEE/ACM International Symposium
on Microarchitecture (2016).

[11] Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Cowan, M., Shen,

H., Wang, L., Hu, Y., Ceze, L., Guestrin, C., and Krishnamurthy,

A. TVM: An Automated End-to-End Optimizing Compiler for Deep

Learning. In Proceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation (2018).

[12] Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G.,

Roberts, A., Barham, P., Chung, H. W., Sutton, C., Gehrmann,

S., et al. Palm: Scaling language modeling with pathways. arXiv
preprint arXiv:2204.02311 (2022).

[13] Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman,

J. J., Ghemawat, S., Gubarev, A., Heiser, C., Hochschild, P., Hsieh,

W., Kanthak, S., Kogan, E., Li, H., Lloyd, A., Melnik, S., Mwaura, D.,

Nagle, D., Quinlan, S., Rao, R., Rolig, L., Saito, Y., Szymaniak, M.,

Taylor, C., Wang, R., and Woodford, D. Spanner: Google’s Globally

Distributed Database. ACM Trans. Comput. Syst. (2013).

[14] Damme, P., Birkenbach, M., Bitsakos, C., Boehm, M., Bonnet, P.,

Ciorba, F., Dokter, M., Dowgiallo, P., Eleliemy, A., Faerber, C.,

et al. DAPHNE: An Open and Extensible System Infrastructure for

Integrated Data Analysis Pipelines. In Conference on Innovative Data
Systems Research (2022).

[15] Daoud, F., Watad, A., and Silberstein, M. GPUrdma: GPU-side

library for high performance networking from GPU kernels. In Pro-
ceedings of the 6th international Workshop on Runtime and Operating
Systems for Supercomputers (2016).

[16] Dean, J., and Ghemawat, S. MapReduce: Simplified Data Processing

on Large Clusters. Commun. ACM (2008).

[17] Du, D., Liu, Q., Jiang, X., Xia, Y., Zang, B., and Chen, H. Serverless

Computing on Heterogeneous Computers. In Proceedings of the 27th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (2022).

[18] Fowers, J., Ovtcharov, K., Papamichael, M., Massengill, T., Liu,

M., Lo, D., Alkalay, S., Haselman, M., Adams, L., Ghandi, M., Heil,

S., Patel, P., Sapek, A., Weisz, G., Woods, L., Lanka, S., Reinhardt,

S. K., Caulfield, A. M., Chung, E. S., and Burger, D. A Configurable

Cloud-Scale DNN Processor for Real-Time AI. In Proceedings of the
45th Annual International Symposium on Computer Architecture (2018).

[19] Frostig, R., Johnson, M. J., and Leary, C. Compiling machine learn-

ing programs via high-level tracing. Systems for Machine Learning
(2018).

[20] Gandhi, A., Asada, Y., Fu, V., Gemawat, A., Zhang, L., Sen, R.,

Curino, C., Camacho-Rodríguez, J., and Interlandi, M. The tensor

data platform: Towards an ai-centric database system. arXiv preprint
arXiv:2211.02753 (2022).

[21] Geyer, A., Krause, A., Habich, D., and Lehner, W. Pipeline Group

Optimization on Disaggregated Systems. In Proceedings of CIDR (2023).

[22] Ghemawat, S., Gobioff, H., and Leung, S.-T. The Google file system.

In Proceedings of the nineteenth ACM symposium on Operating systems
principles (2003).

[23] Gibson, D., Hariharan, H., Lance, E., McLaren, M., Montazeri,

B., Singh, A., Wang, S., Wassel, H. M. G., Wu, Z., Yoo, S., Balasub-

ramanian, R., Chandra, P., Cutforth, M., Cuy, P., Decotigny, D.,

Gautam, R., Iriza, A., Martin, M. M. K., Roy, R., Shen, Z., Tan, M.,

Tang, Y., Wong-Chan, M., Zbiciak, J., and Vahdat, A. Aquila: A

unified, low-latency fabric for datacenter networks. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
22) (2022).

[24] Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., and Guestrin, C. Pow-

erGraph: Distributed Graph-Parallel Computation on Natural Graphs.

In Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation (2012).

[25] Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D., Franklin, M. J.,

and Stoica, I. GraphX: Graph Processing in a Distributed Dataflow

Framework. In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (2014).

[26] Google Cloud Platform. https://cloud.google.com/bigquery.

[27] Grandl, R., Singhvi, A., Viswanathan, R., and Akella, A. Whiz:

Data-Driven Analytics Execution. In 18th USENIX Symposium on
Networked Systems Design and Implementation (2021).

[28] Guo, Z., Shan, Y., Luo, X., Huang, Y., and Zhang, Y. Clio: AHardware-

Software Co-Designed Disaggregated Memory System. In Proceedings
of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (2022).

[29] He, D., Nakandala, S. C., Banda, D., Sen, R., Saur, K., Park, K.,

Curino, C., Camacho-Rodríguez, J., Karanasos, K., and Interlandi,

M. Query Processing on Tensor Computation Runtimes. Proc. VLDB
Endow. (2022).

https://a16z.com/2020/10/15/emerging-architectures-for-modern-data-infrastructure/
https://a16z.com/2020/10/15/emerging-architectures-for-modern-data-infrastructure/
https://arrow.apache.org/
https://cloud.google.com/bigquery

HotOS ’23, June 22–24, 2023, Providence, RI, USA C. Hu et al.

[30] Hennessy, J. L., and Patterson, D. A. A New Golden Age for Com-

puter Architecture. Commun. ACM (2019).

[31] Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly, D. Dryad:

Distributed Data-Parallel Programs from Sequential Building Blocks.

In Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007 (2007).

[32] Jouppi, N. P., Kurian, G., Li, S., Ma, P., Nagarajan, R., Nai, L., Patil,

N., Subramanian, S., Swing, A., Towles, B., et al. Tpu v4: An

optically reconfigurable supercomputer for machine learning with

hardware support for embeddings. arXiv preprint arXiv:2304.01433
(2023).

[33] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Ba-

jwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., Boyle, R.,

Cantin, P.-l., Chao, C., Clark, C., Coriell, J., Daley, M., Dau, M.,

Dean, J., Gelb, B., Ghaemmaghami, T. V., Gottipati, R., Gulland,

W., Hagmann, R., Ho, C. R., Hogberg, D., Hu, J., Hundt, R., Hurt, D.,

Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A., Khaitan, H., Kille-

brew, D., Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D.,

Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean, G., Maggiore, A.,

Mahony, M., Miller, K., Nagarajan, R., Narayanaswami, R., Ni, R.,

Nix, K., Norrie, T., Omernick, M., Penukonda, N., Phelps, A., Ross,

J., Ross, M., Salek, A., Samadiani, E., Severn, C., Sizikov, G., Snel-

ham, M., Souter, J., Steinberg, D., Swing, A., Tan, M., Thorson, G.,

Tian, B., Toma, H., Tuttle, E., Vasudevan, V., Walter, R., Wang, W.,

Wilcox, E., and Yoon, D. H. In-Datacenter Performance Analysis of a

Tensor Processing Unit. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (2017).

[34] Jungmair,M., Kohn, A., andGiceva, J. Designing anOpen Framework

for Query Optimization and Compilation. Proc. VLDB Endow. (2022).
[35] Keeton, K., Singhal, S., Volos, H., Zhang, Y., Chaurasiya, R. C.,

Crasta, C. R., George, S. T., Natarajan, K., Shome, P., Suresh, S.,

et al. MODC: resilience for disaggregated memory architectures

using task-based programming. arXiv preprint arXiv:2109.05329 (2021).
[36] Klimovic, A., Wang, Y., Stuedi, P., Trivedi, A., Pfefferle, J., and

Kozyrakis, C. Pocket: Elastic Ephemeral Storage for Serverless An-

alytics. In Proceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation (2018).

[37] Korolija, D., Koutsoukos, D., Keeton, K., Taranov, K., Milojičić,

D., and Alonso, G. Farview: Disaggregated memory with operator

off-loading for database engines. In Conference on Innovative Data
Systems Research (2021).

[38] Korolija, D., Roscoe, T., and Alonso, G. Do OS Abstractions Make

Sense on FPGAs? In Proceedings of the 14th USENIX Conference on
Operating Systems Design and Implementation (2020).

[39] Kraft, P., Kazhamiaka, F., Bailis, P., and Zaharia, M. Data-Parallel

Actors: A Programming Model for Scalable Query Serving Systems.

In 19th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 22) (2022).

[40] Kraft, P., Li, Q., Kaffes, K., Skiadopoulos, A., Kumar, D., Cho,

D., Li, J., Redmond, R., Weckwerth, N., Xia, B., et al. Apiary: A

DBMS-Backed Transactional Function-as-a-Service Framework. arXiv
preprint arXiv:2208.13068 (2022).

[41] Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pien-

aar, J., Riddle, R., Shpeisman, T., Vasilache, N., and Zinenko, O.

MLIR: A compiler infrastructure for the end of Moore’s law. arXiv
preprint arXiv:2002.11054 (2020).

[42] Liu, H., Tang, B., Zhang, J., Deng, Y., Yan, X., Zheng, X., Shen, Q.,

Zeng, D., Mao, Z., Zhang, C., You, Z., Wang, Z., Jiang, R., Wang, F.,

Yiu, M. L., Li, H., Han, M., Li, Q., and Luo, Z. GHive: Accelerating

Analytical Query Processing in Apache Hive via CPU-GPU Hetero-

geneous Computing. In Proceedings of the 13th Symposium on Cloud
Computing (2022).

[43] Marty, M., de Kruijf, M., Adriaens, J., Alfeld, C., Bauer, S., Con-

tavalli, C., Dalton, M., Dukkipati, N., Evans, W. C., Gribble, S.,

Kidd, N., Kononov, R., Kumar, G., Mauer, C., Musick, E., Olson,

L., Rubow, E., Ryan, M., Springborn, K., Turner, P., Valancius, V.,

Wang, X., and Vahdat, A. Snap: A Microkernel Approach to Host

Networking. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (2019).

[44] Melnik, S., Gubarev, A., Long, J. J., Romer, G., Shivakumar, S.,

Tolton, M., Vassilakis, T., Ahmadi, H., Delorey, D., Min, S., Pa-

sumansky, M., and Shute, J. Dremel: A Decade of Interactive SQL

Analysis at Web Scale. Proc. VLDB Endow. (2020).
[45] Min, J., Liu, M., Chugh, T., Zhao, C., Wei, A., Doh, I. H., and Krish-

namurthy, A. Gimbal: Enabling Multi-Tenant Storage Disaggregation

on SmartNIC JBOFs. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference (2021).

[46] Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang,

E., Elibol, M., Yang, Z., Paul, W., Jordan, M. I., and Stoica, I. Ray:

A Distributed Framework for Emerging AI Applications. In Proceed-
ings of the 13th USENIX Conference on Operating Systems Design and
Implementation (2018), OSDI’18.

[47] Mullender, S. J., Van Rossum, G., Tananbaum, A., Van Renesse, R.,

and Van Staveren, H. Amoeba: A distributed operating system for

the 1990s. Computer (1990).
[48] Murray, D. G., McSherry, F., Isaacs, R., Isard, M., Barham, P., and

Abadi, M. Naiad: A Timely Dataflow System. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles (2013).

[49] Murray, D. G., Schwarzkopf, M., Smowton, C., Smith, S., Mad-

havapeddy, A., and Hand, S. Ciel: A universal execution engine for

distributed data-flow computing. In Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation (2011).

[50] Nelson, J., Holt, B., Myers, B., Briggs, P., Ceze, L., Kahan, S., and

Oskin, M. Latency-Tolerant Software Distributed Shared Memory. In

Proceedings of the 2015 USENIX Conference on Usenix Annual Technical
Conference (2015).

[51] NVIDIA. https://www.nvidia.com/en-us/networking/products/data-

processing-unit/.

[52] NVIDIA. GPU Accelerated Data Science with RAPIDS. https://www.

nvidia.com/en-us/deep-learning-ai/software/rapids/.

[53] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,

Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf,

A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,

Steiner, B., Fang, L., Bai, J., and Chintala, S. PyTorch: An Imperative

Style, High-Performance Deep Learning Library, 2019.

[54] Pemberton, N., Zabreyko, A., Ding, Z., Katz, R., and Gonzalez, J.

Kernel-as-a-Service: A Serverless Interface to GPUs. arXiv preprint
arXiv:2212.08146 (2022).

[55] Pu, Q., Venkataraman, S., and Stoica, I. Shuffling, fast and slow: Scal-

able analytics on serverless infrastructure. In Proceedings of the 16th
USENIX Conference on Networked Systems Design and Implementation
(2019).

[56] Ranganathan, P., Stodolsky, D., Calow, J., Dorfman, J., Guevara,

M., Smullen IV, C. W., Kuusela, A., Balasubramanian, R., Bhatia,

S., Chauhan, P., Cheung, A., Chong, I. S., Dasharathi, N., Feng,

J., Fosco, B., Foss, S., Gelb, B., Gwin, S. J., Hase, Y., He, D.-k., Ho,

C. R., Huffman Jr., R. W., Indupalli, E., Jayaram, I., Kongetira, P.,

Kyaw, C. M., Laursen, A., Li, Y., Lou, F., Lucke, K. A., Maaninen, J.,

Macias, R., Mahony, M., Munday, D. A., Muroor, S., Penukonda, N.,

Perkins-Argueta, E., Persaud, D., Ramirez, A., Rautio, V.-M., Ripley,

Y., Salek, A., Sekar, S., Sokolov, S. N., Springer, R., Stark, D., Tan,

M., Wachsler, M. S., Walton, A. C., Wickeraad, D. A., Wijaya, A.,

and Wu, H. K. Warehouse-Scale Video Acceleration: Co-Design and

Deployment in the Wild. In Proceedings of the 26th ACM International

https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/deep-learning-ai/software/rapids/
https://www.nvidia.com/en-us/deep-learning-ai/software/rapids/

Skadi: Building a Distributed Runtime for Data Systems in Disaggregated Data Centers HotOS ’23, June 22–24, 2023, Providence, RI, USA

Conference on Architectural Support for Programming Languages and
Operating Systems (2021).

[57] Schleier-Smith, J., Sreekanti, V., Khandelwal, A., Carreira, J.,

Yadwadkar, N. J., Popa, R. A., Gonzalez, J. E., Stoica, I., and Pat-

terson, D. A. What Serverless Computing is and Should Become: The

next Phase of Cloud Computing. Commun. ACM (2021).

[58] Shan, Y. Distributing and Disaggregating Hardware Resources in Data
Centers. University of California, San Diego, 2022.

[59] Shan, Y., Huang, Y., Chen, Y., and Zhang, Y. LegoOS: A Dissem-

inated, Distributed OS for Hardware Resource Disaggregation. In

Proceedings of the 13th USENIX Conference on Operating Systems Design
and Implementation (2018).

[60] Sidler, D., Wang, Z., Chiosa, M., Kulkarni, A., and Alonso, G.

StRoM: Smart RemoteMemory. In Proceedings of the Fifteenth European
Conference on Computer Systems (2020).

[61] Singhvi, A., Akella, A., Anderson, M., Cauble, R., Deshmukh, H.,

Gibson, D., Martin, M. M. K., Strominger, A., Wenisch, T. F., and

Vahdat, A. CliqueMap: Productionizing an RMA-Based Distributed

Caching System. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference (2021).

[62] Skiadopoulos, A., Li, Q., Kraft, P., Kaffes, K., Hong, D., Mathew,

S., Bestor, D., Cafarella, M., Gadepally, V., Graefe, G., Kepner,

J., Kozyrakis, C., Kraska, T., Stonebraker, M., Suresh, L., and

Zaharia, M. DBOS: A DBMS-Oriented Operating System. Proc. VLDB
Endow. (2022).

[63] Sreekanti, V., Wu, C., Lin, X. C., Schleier-Smith, J., Gonzalez, J. E.,

Hellerstein, J. M., and Tumanov, A. Cloudburst: Stateful functions-

as-a-service. Proc. VLDB Endow. (2020).
[64] Stuedi, P., Trivedi, A., Pfefferle, J., Klimovic, A., Schuepbach, A.,

and Metzler, B. Unification of Temporary Storage in the Nodekernel

Architecture. In Proceedings of the 2019 USENIX Conference on Usenix
Annual Technical Conference (2019).

[65] Verbitski, A., Gupta, A., Saha, D., Brahmadesam, M., Gupta, K.,

Mittal, R., Krishnamurthy, S., Maurice, S., Kharatishvili, T., and

Bao, X. Amazon Aurora: Design Considerations for High Throughput

Cloud-Native Relational Databases. In Proceedings of the 2017 ACM
International Conference on Management of Data (2017).

[66] Vilanova, L., Maudlej, L., Bergman, S., Miemietz, T., Hille, M., As-

mussen, N., Roitzsch, M., Härtig, H., and Silberstein, M. Slashing

the Disaggregation Tax in Heterogeneous Data Centers with FractOS.

In Proceedings of the Seventeenth European Conference on Computer
Systems (2022).

[67] Vuppalapati, M., Miron, J., Agarwal, R., Truong, D., Motivala, A.,

and Cruanes, T. Building an Elastic Query Engine on Disaggregated

Storage. In Proceedings of the 17th Usenix Conference on Networked
Systems Design and Implementation (2020).

[68] Wang, S., Liagouris, J., Nishihara, R., Moritz, P., Misra, U., Tu-

manov, A., and Stoica, I. Lineage Stash: Fault Tolerance off the

Critical Path. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (2019).

[69] Wang, S., Liang, E., Oakes, E., Hindman, B., Luan, F. S., Cheng, A.,

and Stoica, I. Ownership: A Distributed Futures System for Fine-

Grained Tasks. In 18th USENIX Symposium on Networked Systems
Design and Implementation (2021).

[70] Winter, C., Giceva, J., Neumann, T., and Kemper, A. On-Demand

State Separation for Cloud Data Warehousing. Proc. VLDB Endow.
(2022).

[71] Yandex. Clickhouse. https://clickhouse.com/.

[72] Yang, F., Tschetter, E., Léauté, X., Ray, N., Merlino, G., and Gan-

guli, D. Druid: A real-time analytical data store. In Proceedings of the
2014 ACM SIGMOD international conference on Management of data
(2014).

[73] Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda,

P. K., and Currey, J. DryadLINQ: A System for General-Purpose

Distributed Data-Parallel Computing Using a High-Level Language. In

Proceedings of the 8th USENIX Conference on Operating Systems Design
and Implementation (2008).

[74] Yuan, J., Li, X., Cheng, C., Liu, J., Guo, R., Cai, S., Yao, C., Yang, F.,

Yi, X., Wu, C., et al. Oneflow: Redesign the distributed deep learning

framework from scratch. arXiv preprint arXiv:2110.15032 (2021).
[75] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley,

M., Franklin, M. J., Shenker, S., and Stoica, I. Resilient Distributed

Datasets: A Fault-Tolerant Abstraction for in-Memory Cluster Com-

puting. In Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation (2012).

[76] Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., and Stoica, I.

Discretized Streams: Fault-Tolerant Streaming Computation at Scale.

In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (2013).

[77] Zha, Y., and Li, J. Virtualizing FPGAs in the Cloud. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (2020).

[78] Zhang, Q., Chen, X., Sankhe, S., Zheng, Z., Zhong, K., Angel, S.,

Chen, A., Liu, V., and Loo, B. T. Optimizing data-intensive systems

in disaggregated data centers with teleport. In Proceedings of the 2022
International Conference on Management of Data (2022).

[79] Zheng, L., Li, Z., Zhang, H., Zhuang, Y., Chen, Z., Huang, Y., Wang,

Y., Xu, Y., Zhuo, D., Xing, E. P., Gonzalez, J. E., and Stoica, I. Alpa:

Automating Inter- and Intra-Operator Parallelism for Distributed Deep

Learning. In 16th USENIX Symposium on Operating Systems Design
and Implementation (2022).

[80] Zhou, Y., Wassel, H. M. G., Liu, S., Gao, J., Mickens, J., Yu, M., Ken-

nelly, C., Turner, P., Culler, D. E., Levy, H. M., and Vahdat, A.

Carbink: Fault-Tolerant Far Memory. In 16th USENIX Symposium on
Operating Systems Design and Implementation (2022).

[81] Zhuang, S., Li, Z., Zhuo, D., Wang, S., Liang, E., Nishihara, R.,

Moritz, P., and Stoica, I. Hoplite: Efficient and Fault-Tolerant Col-

lective Communication for Task-Based Distributed Systems. In Pro-
ceedings of the 2021 ACM SIGCOMM 2021 Conference (2021).

https://clickhouse.com/

	Abstract
	1 Introduction
	2 Design and Research Agenda
	2.1 Skadi Overview
	2.2 Access Layer
	2.3 Stateful Serverless Runtime

	3 Related Work
	4 Conclusion
	References

