A short walk through on
virtualization and specialized I/0
virtualization cards

Yizhou Shan
syzwhat@gmail.com
Nov 2021 @ UCSD

& Lab <<2§

UCSan Dieg() P-omote Memory P-ending Group
bl

IIIIIIIIII
This slide is made based on public knowledge and

1

mailto:syzwhat@gmail.com

Outline

A short history on virtualization
Virtualization Essense

Case Studies

« QEMU + KVM

e Xen

Virtualization in the Cloud

Virtualization cards

A short history on virtualization

Pure software simulation - VMware

Para-virtualization Xen

Hardware-supported virtualization - Intel/AMD VT-d

Specialized virtualization cards - AWS Nitro and Microsoft FPGA

Bare-metal virtualization - WIP

(Pretend there is a nice timeline figure here)

Virtualization Essense

e Essense

 Emulate Address Space and devices behind it
e Catch special Instructions

* Quote from QEMU developers

And at the end of the day, all virtualization really means is running a particular set of
assembly instructions (the guest OS) to manipulate locations within a giant memory map for
causing a particular set of side effects, where QEMU is just a user-space application
providing a memory map and mimicking the same side effects you would get when
executing those guest instructions on the appropriate bare metal hardware

0OS Device drivers do actions by writing or reading
(Devices Drivers) corresponding device’s PCle address range.

For example, ibv_post_send() allows a user-program directly

Physical/Bus Address Space writes into RDMA NIC’s memory-mapped PCle range, hence
causing the NIC to do some actions.

L 4 L4 L 4 L 4 L4 v
L4 L4 L4 L4 L4 L4
L4 L4 L 4 L 4 L4 L4
L4 L4 L4 L4 L4 L4
L4 L4 L4 L 4 L4 L4
L4 L4 L4 L4 L4 L4
L4 L4 L4 L 4 L4 L4

Same thing for NVMe driver (either kernel or SPDK)

IB_VERBS: Raw Socket (IBV_QPT RAW PACKET)

In a bare-metal server, o 1
the physical address space directly maps to devices sl

- We fill eth/ip/udp info the post_send buffer
g - Same code can NOT run on top of IB RNIC
sched ring IB VERBS: RoCE
0 - Same code can run on top of IB RNIC
/proc/iomem -
mempool J
100000000-107fffffff : System RAM \ é D
c05800000-c00000e80 : Kernel code “ L
c06600e81-c070581bf : Kernel data [mIX4 }IB_VERBS libibverbs
c07325000-c077fffff : Kernel Dbss DPDK Raw Socket \ [mIX4]/
380000000000-380fffffffff : PCI Bus 0000:00 A A User
380000000000-3800001fffff : PCI Bus 0000:01 T
385000000000-385fffffffff : PCI Bus 0000:85 Y Kernel
386000000000-386fffffffff : PCI Bus 0000:ae [uverbs }
386ffc000000-386fffffffff : PCI Bus 0000:af nost send etc
386ffc000000-386ffdffffff : 0000:af:00.1
386ffc000000-386ffdffffff : mlx5 core [mlx4 J
380ffe000000-386fffffffff : 0000:4af:00.0
380ffe000000-38ocfffffffff mlx5_core ¢

Mellanox VPI
Ethernet NIC

Address Space Mapping in the Virtualized Environment

Guest OS Guest OS
Emulated Guest Physical Address Space | :

SRS VPR .
FEE s EEEEEN reeEn e E N EEEEEEEEEEEEEEEEEEEEEEEEEEE&T S EEEEEEEEEEEEEEEEEER
Roe, ool B o S, © .

Emulated Guest Ph

sical Address Space

Address Translation
- e Physical/Bus Address Space

(by Host OS + Hypervisor + CPU) e
DRAN

Partially
Virtualized 170

Outline

 Case Studies
« QEMU + KVM
 Xen
* Virtualization in the Cloud

 Virtualization cards

Non-Root

Root Ring 3

Root Ring 0
Host Linux

QEMUY/Firecracker

Device
Emulation
[R

Kernel

/0 Stack/Driver

SSD

NIC

VM VM

Device
e e S Emulation

exit 1. Pure Emulated Devices (e.g., serials)
2. Normal emulation (NIC card, HDD, SSD)

Essence of the Device Emulation Layer

- 1. Multiplex, Protection

2. Enforce extra functionalities (e.g., packet
KVM encap/decap)

Recall: QEMU exposes a “faked” address space to VM (by using EPT).
From VM’s perspective, its driver sees the same address range (PCle range).
QEMU mimics device behavior.

9

Suppose to have Xen here

Outline

A short history on virtualization
Virtualization Essense

Case Studies

« QEMU + KVM

e Xen

Virtualization in the Cloud

Virtualization cards

11

Virtualization in the Cloud

e Status
 AWS: Xen -> KVM
* Azure: Hyper-V + something
» Alibaba & Huawei: KVM ?
 They need more to have a complete virt solution
* Network virtualization (e.g., OpenVSwitch + NFs)
* Customized storage stack

* Security checking

12

VM VM

Vendor
Non-Root Modules

QEMU/Firecracker S vim . What are vendor modules?
exit - Enforce vendor policies
Device - e.g., OpenVSwitch, NF Rules etc
Storage Encryption
Emulation 1 9 yp
Root Ring 3
Root Ring 0 B Where to add vendor modules?
H ' * In a separate user space program
ost Linux KVM I QEMU
 In host OS
Kernel * in hardware

/0O Stack/Driver
L N (Check out the AcceINet, NSDI'18 paper)

SSD

13

Threading Model

R Cloud vendors reserve cores to run hypervisor
. = -
Dant —— B _ E VM Hi Hyper\"sor i
oot = = 5 s 5
l : [QEMU =1, ;
Kernel . U] core [] core | : 5 _ core ||| core |:
. ..
Are all these ops running on the same core??
We shouldn’t - bad for provisioning & scaling. SSD NIC

QEMU has separate 1/0 threads for dev emu

14

Outline

A short history on virtualization
Virtualization Essense

Case Studies

« QEMU + KVM

e Xen

Virtualization in the Cloud

Virtualization cards

15

Virtualization is no free lunch

* High perf cost!

 High-speed I/O

o 2-level VM (EPT) implicit overhead

VM exit/enter (e.g., periodical timer interrupt)
 Optimizations?

 Para IO virtualization - VIO between QEMU and guest; but this model cost a lot of CPU cycles,
especially for high-performance 10 stack (not our focus today)

 SR-IOV
 Specialized Cards

16

Non-Root

Root Ring 3

Root Ring 0
Host Linux

SR-I0V enabled Passthrough

Normal SR-IOV enabled devices
presents itself as multiple virtual devices.
Internally, it has a multiplexing

layer for all virtual devices.

VM

QEMU/Firecracker

Device
Emulation
[N

Problem?

SR-I0OV is ALL or NOTHING.
It bypasses cloud vendor modules

Parent Partition VM1 VM2
KVM TCP/IP TCP/IP
PF Driver | VF Driver VF Driver
" P

NIC Embedded Switch

Kernel
/0O Stack/Driver

4

External Switch

Figure 1: An SR-IOV NIC with a PF and VFs.

SSD NIC

17

Virtualization Cards

Non-Root
QEMU/Firecracker
Device
Emulation
Root Ring 3
Root Ring 0
Host Linux

Kernel
/0O Stack/Driver

Modules

Essentially
SR-I0OV + Hypervisor modules!

18

Host
Hypervisor

 [vsso] [vsso]

{ | Hypervisor
: Modules |

Hypervisor

— - - —————
— =—— ——— B

555 sso] [[we |

(Hypervisor
j Modules

\

ToR Switch

| | Hypervisor | |
Modules]

ToR Switch

NOTE: This is mostly for the data path.
Control path might be more complex - but not perf critical

19

' ' ?
VM VM I;Iovx Sclaén we implement those hypervisor modules*

2. FPGA
3. SoC

Host

Hypervisor

Does it has to be one way or another?
No - they can be combined. Depends on vendor usages.

|

, Hypervisor |
i Modules

What’s the benefit of SoC here?

Fast prototyping
Easier for non-FPGA/ASIC teams to deploy new stuff

ToR Switch

20

Going Forward

Host

. VM VM
Hypervisor

So, are we done? Apparently no.

Two major issues

1. VMs are still running on VT-d CPU - EPT perf cost

2. Cards provisioning. Can one card support all usages on a
server? Can they use remote cards?

|

, Hypervisor |
: Modules

—_——
Bare-metal virtualization
Disaggregated virtualization cards

ToR Switch

21

Disaggregated Hypervisor Pool

* A standalone hypervisor pool
* Benefits
e Separate hypervisor processing power provisioning

* Elastic, auto-scaling

Datacenter i} ;
Network i1 Disaggregated Nitro Cards }

22

Summary

* Virtualization cards are no myth

23

24

The Dark Side of Virtualization

o 2-level paging overhead if the customer uses no virt feature at all
e 20-30% overhead
* \endors are looking into bare-metal virtualization

e ref ISCA’10 paper

25

