
A short walk through on
virtualization and specialized I/O

virtualization cards
Yizhou Shan

syzwhat@gmail.com

Nov 2021 @ UCSD

DISCLAIMER
This slide is made based on public knowledge and
reflects my own thoughts. In short, it could be wrong. 1

mailto:syzwhat@gmail.com

Outline
• A short history on virtualization

• Virtualization Essense

• Case Studies

• QEMU + KVM

• Xen

• Virtualization in the Cloud

• Virtualization cards

2

A short history on virtualization

• Pure software simulation - VMware

• Para-virtualization Xen

• Hardware-supported virtualization - Intel/AMD VT-d

• Specialized virtualization cards - AWS Nitro and Microsoft FPGA

• Bare-metal virtualization - WIP

3

(Pretend there is a nice timeline figure here)

4

Virtualization Essense
• Essense

• Emulate Address Space and devices behind it

• Catch special Instructions

• Quote from QEMU developers

And at the end of the day, all virtualization really means is running a particular set of
assembly instructions (the guest OS) to manipulate locations within a giant memory map for
causing a particular set of side effects, where QEMU is just a user-space application
providing a memory map and mimicking the same side effects you would get when
executing those guest instructions on the appropriate bare metal hardware

5

Physical/Bus Address Space

DRAM SSD
Device NIC

OS
(Devices Drivers)

In a bare-metal server,
the physical address space directly maps to devices

…
100000000-107fffffff : System RAM
 c05800000-c06600e80 : Kernel code
 c06600e81-c070581bf : Kernel data
 c07325000-c077fffff : Kernel bss
380000000000-380fffffffff : PCI Bus 0000:00
 380000000000-3800001fffff : PCI Bus 0000:01
385000000000-385fffffffff : PCI Bus 0000:85
386000000000-386fffffffff : PCI Bus 0000:ae
 386ffc000000-386fffffffff : PCI Bus 0000:af
 386ffc000000-386ffdffffff : 0000:af:00.1
 386ffc000000-386ffdffffff : mlx5_core
 386ffe000000-386fffffffff : 0000:af:00.0
 386ffe000000-386fffffffff : mlx5_core
…

/proc/iomem

Device drivers do actions by writing or reading
corresponding device’s PCIe address range.

For example, ibv_post_send() allows a user-program directly
writes into RDMA NIC’s memory-mapped PCIe range, hence
causing the NIC to do some actions.

Same thing for NVMe driver (either kernel or SPDK)

6

Emulated Guest Physical Address Space

Guest OS

Emulated Guest Physical Address Space

Guest OS

Address Space Mapping in the Virtualized Environment

Physical/Bus Address Space

DRAM SSD NIC

OS

Address Translation
(by Host OS + Hypervisor + CPU)

Host Physical Address Space Partially
Virtualized I/O

DRAM SSD NIC

7

Outline
• A short history on virtualization

• Virtualization Essense

• Case Studies

• QEMU + KVM

• Xen

• Virtualization in the Cloud

• Virtualization cards

8

Root Ring 3

Root Ring 0
Host Linux

VM VM

Non-Root

KVM

Device
Emulation

Kernel
I/O Stack/Driver

SSD NIC

vm
exit

1

23

4

QEMU/Firecracker

Device
Emulation

1. Pure Emulated Devices (e.g., serials)
2. Normal emulation (NIC card, HDD, SSD)

Essence of the Device Emulation Layer
1. Multiplex, Protection
2. Enforce extra functionalities (e.g., packet

encap/decap)

Recall: QEMU exposes a “faked” address space to VM (by using EPT).
From VM’s perspective, its driver sees the same address range (PCIe range).
QEMU mimics device behavior.

9

Suppose to have Xen here

10

Outline
• A short history on virtualization

• Virtualization Essense

• Case Studies

• QEMU + KVM

• Xen

• Virtualization in the Cloud

• Virtualization cards

11

Virtualization in the Cloud
• Status

• AWS: Xen -> KVM

• Azure: Hyper-V + something

• Alibaba & Huawei: KVM ?

• They need more to have a complete virt solution

• Network virtualization (e.g., OpenVSwitch + NFs)

• Customized storage stack

• Security checking

12

Root Ring 3

Root Ring 0
Host Linux

VM VM

Non-Root

KVM

Device
Emulation

Kernel
I/O Stack/Driver

SSD NIC

vm
exit

1

23

4

QEMU/Firecracker

Vendor
Modules

What are vendor modules?
• Enforce vendor policies
• e.g., OpenVSwitch, NF Rules etc 

 Storage Encryption

Where to add vendor modules?
• In a separate user space program
• In QEMU
• In host OS
• in hardware

V

V

V

(Check out the AccelNet, NSDI’18 paper)

13

Threading Model

Are all these ops running on the same core??

We shouldn’t - bad for provisioning & scaling.

QEMU has separate I/O threads for dev emu

Root
Root

VM VM
Non-

KVM

Device

Kernel

SSD NIC

vQEMU/

core core core

Cloud vendors reserve cores to run hypervisor

VM

corecore corecorecore

VMVM Hypervisor

core core

SSD NICSSDSSD

KVM QEMU

14

Outline
• A short history on virtualization

• Virtualization Essense

• Case Studies

• QEMU + KVM

• Xen

• Virtualization in the Cloud

• Virtualization cards

15

Virtualization is no free lunch
• High perf cost!

• High-speed I/O

• 2-level VM (EPT) implicit overhead

• VM exit/enter (e.g., periodical timer interrupt)

• Optimizations?

• Para IO virtualization - VIO between QEMU and guest; but this model cost a lot of CPU cycles,
especially for high-performance IO stack (not our focus today)

• SR-IOV

• Specialized Cards

16

SR-IOV enabled Passthrough

Root Ring 3

Root Ring 0
Host Linux

VM VM

Non-Root

KVM

vm
exit

Device
Emulation

Kernel
I/O Stack/Driver

SSD NIC

1

2
3

4

QEMU/Firecracker

vNIC vNIC

Normal SR-IOV enabled devices
presents itself as multiple virtual devices.
Internally, it has a multiplexing
layer for all virtual devices.

Problem?

SR-IOV is ALL or NOTHING.
It bypasses cloud vendor modules

17

Root Ring 3

Root Ring 0
Host Linux

VM VM

Non-Root

KVM

vm
exit

Device
Emulation

Kernel
I/O Stack/Driver

SSD NIC

1

2
3

4

QEMU/Firecracker

vNIC vNIC

Hypervisor
Modules

Virtualization Cards

Essentially
SR-IOV + Hypervisor modules!

18

VM VM

vNIC vNIC

Hypervisor
Modules

Host
Hypervisor VM VM

vSSD vSSD

Hypervisor
Modules

ToR Switch

VM VM

vNIC vNIC

Hypervisor
Modules

Host
Hypervisor VM VM

ToR Switch

vSSD vSSD
PCIe

NOTE: This is mostly for the data path.
Control path might be more complex - but not perf critical

19

VM VM

vNIC vNIC

Hypervisor
Modules

Host
Hypervisor VM VM

ToR Switch

vSSD vSSD

How can we implement those hypervisor modules?
1. ASIC
2. FPGA
3. SoC

Does it has to be one way or another?
No - they can be combined. Depends on vendor usages.

What’s the benefit of SoC here?
Fast prototyping
Easier for non-FPGA/ASIC teams to deploy new stuff

20

VM VM

vNIC vNIC

Hypervisor
Modules

Host
Hypervisor VM VM

ToR Switch

vSSD vSSD

So, are we done? Apparently no.

Two major issues

1. VMs are still running on VT-d CPU - EPT perf cost
2. Cards provisioning. Can one card support all usages on a 

server? Can they use remote cards?

==>
Bare-metal virtualization
Disaggregated virtualization cards

Going Forward

21

Disaggregated Hypervisor Pool
• A standalone hypervisor pool

• Benefits

• Separate hypervisor processing power provisioning

• Elastic, auto-scaling

Disaggregated Nitro CardsServerServerServer Disaggregated Nitro CardsDisaggregated Nitro Cards
Datacenter

Network

22

Summary

• Virtualization cards are no myth

23

24

The Dark Side of Virtualization

• 2-level paging overhead if the customer uses no virt feature at all

• 20-30% overhead

• Vendors are looking into bare-metal virtualization

• ref ISCA’10 paper

25

