
Towards a Fully Disaggregated and Programmable
Data Center

Yizhou Shan
University of California, San Diego

ys@ucsd.edu

Will Lin
University of California, San Diego

w5lin@ucsd.edu

Zhiyuan Guo
University of California, San Diego

z9guo@eng.ucsd.edu

Yiying Zhang
University of California, San Diego

yiying@ucsd.edu

Abstract
Today, we are seeing two trends in the data center. On the one
hand, applications are becoming more fine-grained, driven by
the recent trend of serverless computing and microservices.
On the other hand, data-center hardware is becoming more
heterogeneous and customized to different computing needs.
Because of these trends and for better manageability, several
major data centers are moving towards a disaggregated archi-
tecture, where different hardware resources like storage and
accelerators are organized as independent, network-attached
pools. However, data centers today are still server-centric and
relies heavily on traditional CPU-based servers.

In this paper, we take a step further and explore the pos-
sibility of building a fully disaggregated data center, where
every type of resource is disaggregated. Moreover, we explore
the requirements and implications of making each of the dis-
aggregated device programmable. We present guidelines and
initial solutions for data center designers to navigate design
trade-offs. Specifically, we decompose the overarching prob-
lem into four sub-problems and propose solutions to each of
them. At the top layer, we explore two types of abstractions
and propose a disaggregation-native design methodology. At
the bottom layer, we describe the hardware and key features
required to build disaggregated devices as well as the net-
working infrastructure to connect them. To bridge these two
layers, we propose a static-time component that compiles
different user programs into heterogeneous disaggregated
devices through a disaggregation-native intermediate repre-
sentation. We also propose a run-time system that manages

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
APSys ’22, August 23–24, 2022, Virtual Event, Singapore
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9441-3/22/08.
https://doi.org/10.1145/3546591.3547527

hardware resources and schedules compiler generated execu-
tion units. We hope our proposal can pave the way for future
disaggregated and programmable data center deployment.

CCS Concepts
• Computer systems organization → Cloud computing.

Keywords
Resource Disaggregation, Data-Center Hardware Architec-
ture, Data-Center Network

ACM Reference Format:
Yizhou Shan, Will Lin, Zhiyuan Guo, and Yiying Zhang. 2022.
Towards a Fully Disaggregated and Programmable Data Center. In
13th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys ’22),
August 23–24, 2022, Virtual Event, Singapore. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3546591.3547527

1 Introduction
We live at an exciting time when both software and hardware
in data centers are experiencing revolutional developments.
At the one hand, data center applications are becoming more
fine-grained, driven by the microservices software model
and the cloud serverless computing paradigm. Fine grained
computation units are easier to scale and can more efficiently
utilize data-center hardware resources. When coupled with
a management layer that hides the complexity of deploying
fine-grained application units, users can focus on their core
business logic, leaving IT burdens to the provider. Because
of these benefits, fine-grained computing models such as
serverless computing are often expected to keep seeing wider
adoption or even become “the default computing paradigm
of the cloud era” [54]. Hence, we will see more existing
applications or system software transitioning into smaller,
DAG-based serverless counterparts.

On the other hand, the data center hardware infrastructure is
becoming more heterogeneous and programmable. As CPU is
meeting its limitation with the slow down of Dennard scaling
and Moore’s Law, accelerators like GPU, FPGA, and TPU
are deployed in large scale in major data centers [4, 5, 21, 34,
50]. Unlike traditional fixed-logic hardware, many of today’s

https://doi.org/10.1145/3546591.3547527
https://doi.org/10.1145/3546591.3547527

APSys ’22, August 23–24, 2022, Virtual Event, Singapore Yizhou Shan, Will Lin, Zhiyuan Guo, and Yiying Zhang

Unmodified
Applications

Data Structures &
Algorithms

Serverless

Disaggregation-Native

Abstractions
(Sec 4.1)

Intermediate
Representation

(Sec 4.2)
Hardware Infrastructure

(Sec 4.3)

Bypass

Annotated
Applications

CPUCPU
Pool

CPUMem
Pool

CPUStorage
Pool

CPUXPU
Pool

p4
Switch

Programmble
Switch

MiddleboxesMulti-Host
SmartNIC

Disaggregated Networking

Circuit
Switches

Reconfigurable
Topology

Programmable
Network

Disaggregated Resource Pools

MLIR

CodeletCodelet

Codelet
IR Inst

Policies
Data

Sched

Backends
LLVM, CIRCT

Linux-
based

 Legacy Server Pool CPUServersCPUServers

OS for FDP-DC

Resource
Managment

Load Balancing

Replication

Scheduling

Management
System (Sec 4.4)

Migration

Figure 1: Overview of a Fully Disaggregated and Programmable Data Center.

accelerators are fully programmable or have a programmable
part. Apart from computing resources, networking resources
are also becoming more heterogeneous and programmable.
Instead of traditional middleboxes and NICs, programmable
switches and SmartNICs are making their ways into data
centers [13, 18, 18, 19, 19, 21].

Although both software and hardware in data centers are
evolving quickly, the data center architecture has largely re-
main the same for decades: regular servers connected with a
data-center-wide network. Unfortunately, the fine granularity
and heterogeneity of today’s software and hardware make
deployment and management hard in a server-based data cen-
ter. Partly because of this, several major data centers started
to embrace a new data-center architecture called resource
disaggregation. The idea of resource disaggregation is to or-
ganize each type of hardware resource as a separate resource
pool and to allow applications to utilize any resource from
a pool. For example, many data centers today disaggregate
storage resources from compute servers [6, 23, 45, 65]. With
disaggregation, data-center owners can easily add, remove,
manage, and change hardware of one type without affecting
other hardware types.

Despite the success in today’s disaggregation solutions,
three open research questions remain. First, although cer-
tain types of hardware resources like storage have been suc-
cessfully disaggregated, it is unclear how to disaggregate
other types of resources like accelerators and network de-
vices. Instead of today’s point solutions for each resource
type, what is a generic disaggregation design that could
work for heterogeneous types of resources? Second, today’s
data-center network is designed for connecting servers, but

how to efficiently connect disaggregated devices? Can we
make use of programmability and reconfigurability in the
network for a disaggregated data center? Finally, it is still
unclear how to best map applications to a disaggregated
hardware platform. Shall we use new programming mod-
els? How to support legacy programs? Are there any opti-
mizations we can do when mapping applications (especially
serverless/microservice software) to disaggregated clusters?

If and when these challenges are solved, we can evolve data
centers into being fully disaggregated and programmable (i.e.,
a FDP-DC). This positioning paper provides some guidelines
and lays out one potential solution to build such a data center.
We decouple the overarching goal into four sub-problems, as
shown in Figure 1.

The first problem is a user-facing one, where we need to
decide how users can program and run their applications on
a FDP-DC (i.e., a FDP-DC’s abstraction). We envision two
types of abstractions, and a FDP-DC can adopt either one
of them or both of them. The first abstraction is a backward-
compatible one, where users are not aware of the disaggre-
gation or programmable-hardware nature. They would either
assume that their programs run on a virtual machine or are
completely server-agnostic (i.e., a serverless model). The
second abstraction exposes (to some extent) the underlying
disaggregated and programmable nature of FDP-DC to ap-
plications. Although this abstraction requires more developer
effort, we expect it to yield better performance as users can
directly control and leverage low-level systems features such
as disaggregation-aware data/compute placement, failure han-
dling, and network communication.

Towards a Fully Disaggregated and Programmable Data Center APSys ’22, August 23–24, 2022, Virtual Event, Singapore

The second problem is how to map applications to the
FDP-DC hardware and system infrastructure. Similar to the
traditional server setting, we believe that a compiler is needed
for FDP-DC. Different from traditional servers, both applica-
tions and hardware in a FDP-DC are heterogeneous. To easily
manage such heterogeneity, we propose to use an Intermedi-
ate Representation (IR) for the middle layer. Our proposed
IR centers around the concept of disaggregated execution
units, or codelets, the unit for scheduling and execution. In
addition to code and data, we encapsulate various execution
features or hints in each codelet, such as a replication fac-
tor and security features. We propose to use MLIR [39] to
decompose a program into multiple smaller codelets and a
companion DAG dictating the execution order of the codelets.
Our compiler can further add features to the DAG edges such
as communication patterns between codelets.

The third problem is building the hardware infrastructure
in a FDP-DC. We provide guidelines for building a disaggre-
gated device and identify three key features for it: network
connectivity, hardware virtualization, and multi-tenancy iso-
lation/security. In addition, a device could offer some pro-
grammability or configurability. We then propose a network
design to connect disaggregated devices. We envision a net-
work topology that is reconfigurable, with the help of circuit
switches and/or packet switches with cut-through forwarding.
Such a dynamic topology could better fit different applica-
tion needs and hardware availability [69, 70]. On top of this
topology, we propose a programmable network infrastruc-
ture that consists of programmable switches and multi-host
SmartNICs, which application codelets and provider manage-
ment tasks can be offloaded to [32, 33, 42]. We advocate the
use of multi-host SmartNICs, which consolidates network
functionalities of multiple endpoints to one device, instead of
one SmartNIC per endpoint. We further pool these multi-host
SmartNICs together into a pool, effectively disaggregating
network functionalities [56]

With applications, compiler, and hardware infrastructure
in place, the last missing piece is a runtime management
system (i.e., an operating system) for FDP-DC. The FDP-
DC OS would oversee all resource pools and the network
system and map (i.e., schedule) codelet DAGs to the under-
lying infrastructure. It will use the hints from the compiler
when scheduling. For example, based on the DAG edges, the
OS can choose a network topology and potentially initiate
a reconfiguration of the network. It would also choose the
right devices to launch codelets, monitor load, and potentially
migrate codelets based on load changes.

To illustrate how the above four components work together,
we now briefly discuss the end-to-end development and execu-
tion flow of a data processing system. First, developers of the
system can annotate each operator (e.g., a select, an aggrega-
tor) to indicate what resources it needs, whether it is intended

to run on an accelerator, etc. They will also capture the pro-
cessing pipeline (e.g., the output of a SQL query optimizer)
as a DAG of operators. Then, our compiler will generate
codelets and DAG of codelets based on the DAG of operators.
During this process, our compiler would decide the scope
of a codelet (e.g., one operator or multiple highly-correlated
operators) and compile each codelet into multiple binaries
for heterogeneous devices (e.g., one for FPGA and one for
CPU). During runtime, our OS will schedule the codelet DAG
based on resource availability and dynamically choose the
hardware device to run a codelet (e.g., if no FPGA is avail-
able, we would run a codelet on CPU). The OS will also
use the DAG edge information to decide a network topology
and network policy for the workload. Based on the network
topology, the OS may decide to execute some codelet on a
programmable network device (e.g., performing caching on
a programmable switch). Finally, the hardware network de-
vices will each execute a codelet in a virtualized and isolated
environment.

With these initial proposals, this vision paper outlines one
possible path for data center designers to build a fully disag-
gregated and programmable data center. While our proposal
may appear drastic, we hope some of it can be useful when
dealing with challenges in today’s fast-changing workloads
and hardware landscape. The solutions we proposed are by no
means complete. We call for more contribution in this space.

2 Background and Related Works

This section presents background and related works in pro-
grammable/reconfigurable networks, resource disaggregation,
and programming models.

2.1 Programmable and Reconfigurable Network

As cloud traffic has doubled roughly every year since 2005,
the data center networking infrastructure is constantly chang-
ing and is never short of innovations [10]. Around the late
2000s, software-defined networking was proposed to im-
prove management efficiency by decoupling the control plane
(which decides how to handle the traffic) from the data plane
(which forwards traffic according to decisions that the con-
trol plane makes) and then consolidating the control plane
onto a set of commodity servers [18, 19, 37]. Recently, the
p4 switch [13] and emerging heterogeneous networking de-
vices [31, 56] further empower the data plane with unprece-
dented programmability and in-network computing at various
link locations. Nowadays, both the data and control planes
in data center networks are programmable and able to run
customized user computation [19, 33].

Furthermore, emerging switching solutions and fabrics are
challenging the status quo on how we interconnect data center

APSys ’22, August 23–24, 2022, Virtual Event, Singapore Yizhou Shan, Will Lin, Zhiyuan Guo, and Yiying Zhang

hardware. For instance, optical circuit switch can reconfig-
ure the network topologies by changing the physical con-
nections among devices to best fit workload’s network traf-
fic pattern [69, 70], rendering a drastic departure from the
fixed-topology models [26, 59]. On the other hand, emerg-
ing fabrics such as CXL [15, 25, 43, 47] offer extremely
low-latency interconnect solutions for disaggregated devices.
Overall, today’s data-center network infrastructure is more
programmable, modularized, and flexible, enabling the real-
ization of a FDP-DC.

2.2 Hardware Resource Disaggregation

Hardware resource disaggregation is a proposal that breaks
regular servers into segregated, network-attached hardware
resource pools. It promises to improve a data center’s man-
ageability and resource utilization.

We briefly discuss related works of hardware resource
disaggregation in chronological order of four phases. Ini-
tially around 2009, disaggregation was proposed to mitigate
memory capacity issues [44], which got limited attention and
follow-up works. There was a renewed interest around 2016
as the network speed improved to a point where disaggrega-
tion can be realistic. As such, the second phase sees a spike of
infrastructure [22], low-level systems [8, 27, 28, 35], and op-
erating systems (OS) [55] targeting disaggregation. The third
phase moves up the stack with systems co-designing disaggre-
gation with applications or language runtime [46, 51, 61, 66–
68, 74, 75, 82]. Now we are at the fourth phase, which aims
for real deployment of resource disaggregation. On the one
hand, researchers are seeking how to match application pro-
gramming models and cloud services with disaggregated hard-
ware [62, 79]. On the other hand, researchers and practitioners
are building real hardware and deploying them in data cen-
ters [24, 25, 43, 47, 56, 80]. This vision paper is not proposing
a next phase. Instead, we are envisioning areas where the next
phase may prosper.

2.3 Programming Models and Runtime Support

For deploying and running workloads on emerging disaggre-
gated architectures, two approaches have been proposed. First
is to design new programming models [51], allowing applica-
tion or library writers to explicitly annotate and characterize
their workload’s behavior. The runtime then utilizes this in-
formation to inform optimizations on memory management,
data structures and concurrency mechanisms. The second ap-
proach transparently provides disaggregation and focus on im-
proving existing runtime and operating systems [3, 55, 66, 67].
Existing works focus on adapting and optimizing components
such as garbage collector [66, 67] and swap system [3, 55]
for disaggregated architectures.

In contrast, compiler support has been lacking for disag-
gregation. With more heterogeneous hardware being adopted

by data centers, compilers targeting individual architectures
have seen adoption [12, 48, 53]. Unfortunately, they are not
designed for a disaggregated architecture and miss many op-
portunities for disaggregation-specific optimizations.

3 FDP-DC Design
In a FDP-DC, all devices and networking hardware are pro-
grammable and disaggregated from each other. Moreover, the
network topology can be dynamically reconfigured to best
match workload requirements. Figure 1 illustrates the four
components of a FDP-DC solution. The abstraction and com-
piler components are user facing and aims to enhance the
usability of FDP-DC. The OS and hardware infrastructure
components are the building blocks of FDP-DC and the envi-
ronment that executes compiler outputs. Below, we discuss
each of them in more details.

3.1 Abstractions and Usage Models

We support two types of abstractions: a backward-compatible,
transparent abstraction to support legacy server programs and
serverless programs, and a disaggregation-native abstraction
that exposes some of the underlying FDP-DC features for
programmers to better manage their applications.
Transparent abstraction. Today’s applications all run on
a server setting, usually on a hypervisor or a container. To
continue support these applications, we can virtualize the un-
derlying FDP-DC hardware into a virtual machine abstraction.
LegoOS [55] has demonstrated the feasibility of offering a
Linux compatible interface; it also supports the concept of
vNode, which is a virtual node that can span multiple physical
nodes or be a part of one physical node. We envision similar
approaches to be taken to provide other traditional virtual
interface, such as the container interface.

Besides the above server-based interface, there are also a
fair amount of applications that are deployed on serverless
computing frameworks today. These applications are server-
agnostic and give the underlying system more freedom to
choose the execution environment. Thus, a FDP-DC system
can potentially map one serverless function onto one device
and use a DAG of serverless functions as the input to the
FDP-DC compiler.
Disaggregation-native abstraction. Transparent abstractions
require no developer effort but cannot fully exploit various
performance optimization opportunities. We propose another
type of abstraction, one that is disaggregation-native. The
core idea is to expose the heterogeneous hardware nature and
co-design software with it. Developers can either use a new
interface or annotate their existing programs to give hints or
specify requirements for how their programs would run on
a FDP-DC. Such an abstraction allows users to more freely
and closely manage the way to execute their programs and
can potentially improve the application performance and/or

Towards a Fully Disaggregated and Programmable Data Center APSys ’22, August 23–24, 2022, Virtual Event, Singapore

LLVM
CIRCT
SPIR-V

TPU IR

Native
Language

Hardware
Language

affine arith scf

Backends

Dialect

Disagg-
Native

Programs

Shared
Optimizations

MLIR

CPUXPU

CPUFPGA
Codelets
Migration

Hardware Targets

CPUCPU

Codelet

Codelet

Codelet
IR Inst

Reqs
Data

Hints

Codelet1

BinBin

Codelet2

BinBin

2

1

3

4

5

Managed
Language

Codelet

DAG of
Codelets

Figure 2: IR and Compilation Flow. CIRCT is a backend for
FPGA. SPIR-V is an IR for GPU. A codelet can be compiled into
multiple executable binaries, or bitstreams.

reduce its execution cost. Below, we list three potential ways
of explicitly exposing FDP-DC infrastructure information.

First, programmers could annotate their data and code to
control hardware choice, placement, co-location, and fault
handling. For example, they could indicate what data structure
can be placed in disaggregated memory, similar to the AIFM
interface [51], and specify the replication factor of a data
structure. They could also give hints on what types of compute
hardware (CPU, FPGA, etc.) a function can run on.

Second, we can expose device or network failure domains
to developers or application systems administrators. They can
then pack functions or data structures that can fail together in
the same failure domain and further specify different failure
handling mechanisms for each domain, For example, they
may want to replicate important user data but are OK with
losing intermediate data.

Third, programmers can specify a taskflow as a DAG to
represent their application. They can also specify multiple
feasible DAGs for the compiler and the run-time system to
choose a best one based on the available network topologies
and resources in a FDP-DC.

3.2 Intermediate Representation

To support heterogeneous hardware and applications, we pro-
pose to use a disaggregation-native intermediate represen-
tation (IR) and have a compiler to manipulate the mapping
between different representations. Our IR centers around the
concept of codelets. A codelet encapsulates code and data
that is closely related (and thus should execute together). It is
the smallest unit of scheduling and execution. It can also have
additional features like target hardware architecture(s) and
reliability policy. Codelets in a program are organized into
a DAG, whose edges represent the communication between
codelets. computation, policies, network topology configu-
rations, and scheduling primitives. and a companion DAG
dictating the execution order of codelets.

On top of the codelet concept, we further propose a compi-
lation flow based on MLIR (Multi-Level Intermediate Repre-
sentation) [40]. The basic idea is to use multiple levels of IRs
to capture different levels of code optimization opportunities.
For each layer, we can define disaggregation-specific optimiz-
ers. Specifically it works as follows (Figure 2). The MLIR
framework takes existing languages or our disaggregation-
native programming model as inputs (1○). Within MLIR, there
could be multiple domain-specific dialects for distinct inputs,
e.g., a p4-dialect for P4 programs. We use a universal layer
to carry out common optimizations. The optimized dialects
are then lowered onto a codelet-based IR, which packages
instructions that are closely related to one codelet (2○). We
will also associate execution requirements and hints with each
codelet. Then, we will compose different codelets together
into one or multiple DAGs. Subsequently, the codelets are
transformed onto various backends for final compilation (3○).
We can compile the codelet for distinct hardware targets using
existing compilers such as LLVM or CIRCT [1]. Multiple
binaries or bitstreams will be produced for each codelet to-
gether with generated APIs that can interact with the states
within a codelet binary (4○). Finally, codelets are executed
and can be migrated across devices when load changes (5○).

3.3 Hardware Infrastructure

The FDP-DC hardware infrastructure has two components.
(1) The disaggregated resource pools each hosts a type of re-
source (e.g., compute, memory, and storage) and can be built,
scaled, and managed independently. Existing systems built for
disaggregation [11, 55] can run atop of them without changes.
(2) The networking infrastructure consists of circuit switches
and programmable networking devices. Network functionali-
ties are first disaggregated from other resource pools and then
consolidated into a standalone networking pool, following
the network disaggregation idea initially proposed by Super-
NIC [56]. We improve SuperNIC by incorporating more types
of programmable networking devices into the networking
pool, by proposing a data-center-wide network solution, and
by using circuit switches to enable reconfigurable topologies.

3.3.1 Disaggregated Devices To facilitate future develop-
ment of more types of disaggregated device, we identify three
core functionalities for a disaggregated device and discuss
how to provide each of them.

The first is network connectivity, an essential feature that
all disaggregated devices should have. Different from tradi-
tional servers which is each equipped with a NIC or Smart-
NIC, we believe that disaggregated devices only need basic
connectivity. Its sole job is to send and receive data pack-
ets for the last hop, and only need to provide basic physical
and link layer functionalities. Ethernet and PCIe can both
work for the basic connectivity. Emerging interconnects like

APSys ’22, August 23–24, 2022, Virtual Event, Singapore Yizhou Shan, Will Lin, Zhiyuan Guo, and Yiying Zhang

CXL [15, 25, 43, 47] can also work, which provides addi-
tional coherence features. As will be discussed in §3.3.2, we
propose to disaggregate all remaining network functionalities
like transport layers into a separate network resource pool.

Another basic feature is multi-tenancy and virtualization
support, which enables safe and fair sharing of hardware
resources with a flexible virtualized interface. Multi-tenancy
and virtualization have been extensively studied for traditional
server settings, but applying them to disaggregated devices
poses new challenges. First, when virtualizing a disaggregated
device, we need to ensure the scalability of the virtual system,
since one device is anticipated to serve many clients at the
same time. For example, the disaggregated memory device
that we built [80] implements a virtual memory system that
can support TBs of memory and thousands of concurrent vir-
tual address space. We believe that similar scalability consid-
erations should be incorporated when developing new virtual
systems. Second, since a disaggregated device can have more
than one computing resource, we need to ensure the overall
fairness of all different types of resources for multiple tenants.
For instance, the SuperNIC disaggregated network device
that we recently built [56] includes ASIC, FPGA, memory,
and ingress/egress bandwidth resources. In addition to ensure
proper isolation for each of them, we develop a fairness pol-
icy that considers multiple types of resources and both time-
and space-multiplexing. Finally, device designers should seek
software-hardware co-design opportunities and properly split
virtualization/multi-tenancy tasks between hardware and soft-
ware and between client and server side. A common approach
is to put the data plane (e.g., virtual memory to physical mem-
ory address mapping) in hardware and the control plane (e.g.,
memory allocation) in software, which would also work for
disaggregated devices [80].

Last but not least, security features could be added for
environments that require in-depth security guarantees. We
identify that a disaggregated device can provide three levels of
security defenses. The first level is ensuring basic data encryp-
tion, authentication, and authorization and secures the device
from malicious entities in the network. Unfortunately, security
mechanisms required for this level are missing in many recent
devices [58, 72, 80]. The next level provides stronger security
guarantees by delivering confidential computing, allowing
users to offload highly-sensitive computation and data to un-
trusted cloud providers and their management stack. Though
TEEs and confidential computing have been studied individu-
ally for resources like CPU [9, 14, 41], FPGA [77, 78], and
GPU [29, 63], they share the same challenges when applied
to disaggregated devices which commonly use SoCs [80] that
could contain a heterogenous set of CPUs, GPUs, and FPGAs.

Finally, the last level provides mechanism and tools to mit-
igate covert [20, 30] and side-channels [29, 71]. This level
should be highly configurable as some security features such

Pod

1

SuperNIC

Programmable/Normal
ToR Switch

SuperNIC

2 3
4 5 6

7 8 9

Circuit
ToR Switch

B C

LeafLeaf

A

D

SuperNIC

E F

SDN
Controller

Pod

Spine

Figure 3: Proposed Network Infrastructure. Gray circles
represent devices or servers. ToR switches can be programmable,
circuit, or normal switches. Network programmability is enabled
by all the blue-colored boxes. Dynamic topology is enabled by red-
colored circuit switches and blue-colored devices with cut-through
forwarding. Black links are standard Ethernet links. Red links could
be novel links such as GNet [24].

as oblivious communication [60, 64] may have large impact
on performance. In addition, techniques for performing un-
trusted computation on secrets also has a wide range of perfor-
mance to security trade-offs. Examples include sandboxing
techniques [30] and secure computation algorithms such as
homomorphic encryption [38, 52]. Allowing each tenant to
make their own trade-offs will be critical in supporting a wide
range of applications.

In all, we believe future disaggregated devices should in-
vest in all or some of the following features: network connec-
tivity, multi-tenancy and virtualization support, and security
defenses. The key technical challenges are dealing with mul-
tiple or novel computing resources.

3.3.2 Data Center Networking We now discuss issues re-
lated to the data-center networking. Figure 3 shows the en-
visioned architecture in which the data-center network is
organized as pods and managed by a logically centralized
SDN controller [7, 19, 24].
Topology and deployment scale. When disaggregating re-
sources from each other, the network communication delay
between them would be a key limiting factor of the end-to-
end application performance in a FDP-DC. Thus, we should
try to have fewer network hops between communicating de-
vices. Meanwhile, recent study [43] shows that a handful of
compute nodes are enough to fully utilize one disaggregated
memory device. Thus, we believe that the future FDP-DC
would go with a hierarchical topology where the lowest level
(which we call a pod) contains hundreds of disaggregated
devices that are expected to communicate fairly frequently.
A pod is connected with at most one switch and possibly a

Towards a Fully Disaggregated and Programmable Data Center APSys ’22, August 23–24, 2022, Virtual Event, Singapore

disaggregated network resource pool (to be discussed soon).
Cross-pod communication is less frequent but has a larger
radius, expanding the entire data center. This topology is sim-
ilar to the recent Google Aquila work [24] which is targeted
for enabling low-latency data-center network communication.
Network programmability. Today’s data-center network is
becoming more programmable, with the emergence of Smart-
NICs, programmable switches [13], and multi-host Smart-
NICs [2, 56]. Together, they make a rich set of hardware
resources such as RMT, FPGA, and CPU available to perform
in-network computing. We treat the network as a first-class
disaggregated resource. Essentially, we can view the collec-
tion of programmable switches and NICs as a pool of network
resources where endpoints can offload their network tasks
to [56]. We can further consolidate network resources by
enabling tighter sharing and multi-tenancy on devices in a
network resource pool. Together, the disaggregated network
pool could lower the total CapEx and OpEx costs and make
network programmability easier to manage. Not that these
benefits inherit the benefits of resource disaggregation, and we
believe many techniques used in building other disaggregated
resource pools can be used for networking as well.
Dynamic reconfigurable topology. We propose to enable
dynamic reconfigurable topology on top of fixed physical net-
work deployment. Specifically, we want to build conceptual
point-to-point connections among selective devices to avoid
in-network buffering. At its core, we use circuit-switching to
create temporal links and reconfigurable topologies are real-
ized by adjusting those temporal links. As Figure 3 shows, we
think both optical circuit switches and packet-based switches
with cut-through forwarding can be used. Nonetheless, we
believe a key open challenge is to develop an efficient sched-
uling policy co-designed with the infrastructure along with
the running workloads [17, 57, 69, 70].

3.4 Operating Systems for FDP-DC

Finally, there is the operating system or control plane that
oversees all the disaggregated and network infrastructure.
This data-center-wide OS is responsible for resource allo-
cation, task scheduling, health monitoring, load balancing,
failure handling, etc.
Resource Management. For resource management, the chal-
lenge is to efficiently map applications to FDP-DC resources.
One of the promises that FDP-DC brings is going beyond the
physical constraints of the traditional monolithic server. In
order to achieve this, two things need to be realized: mapping
codelets to pools of resources and making codelets unlim-
ited to individual device’s resource constraints. Moreover, the
scheduler’s fairness policy and allocation mechanism should
factor in architectural differences between disaggregated de-
vices. To navigate through these challenges and scale well, we
adopt a two-level approach similar to LegoOS [55] in which

a global manager only performs coarse-grained, architecture-
agnostic allocations while the specific devices perform finer-
grained, architecture-aware allocation [36, 73].
Fault Tolerance. To achieve fault tolerance, the OS can ex-
pose a menu of abstractions for failure handling such as best-
effort handling and transparent handling [81]. The former
exposes failures to applications while the latter hides them, al-
lowing users to choose the one they see fit. The OS also needs
to consider the topology when meeting fault tolerance and
SLA requirements as rack-scale fault domains may change as
we introduce reconfigurable topology.
Load Balancing. We observe that the control plane’s most
challenging task will be load balancing computation, data,
and network bandwidth among disaggregated devices at high
speed during runtime. Most notably, disaggregation architec-
ture decouples the relationship between how scaling the appli-
cation affects network bandwidth requirements, also known
as the "disaggregation tax" [62]. The inclusion of network
bandwidth results in a complicated choice matrix concern-
ing device capability, data location, network topology, and
network bandwidth. Traditional methods may fall short in
making such decisions fast enough to produce reasonable
outcomes. In response, we identify two non-exclusive ap-
proaches to tackle this issue. First, we can utilize reinforce-
ment learning to transform it into a learning problem. Similar
methods are proven effective for OS [76], database [49], and
data structures [16]. Second, we plan to onload this task from
the operating system into the application layer by introducing
explicit data movement [62] and scheduling primitives [51]
in the IR layer (§3.2).

4 Conclusion
This paper presents one vision into building a futuristic fully
disaggregated and programmable data center. Our proposed
solution incorporates four key components: easy-to-use ab-
stractions, flexible compiler optimizations, scalable systems
management, and efficient and programmable hardware. We
hope this vision or part of it can help researchers and prac-
titioner in solving some of the future application/hardware
challenges in data centers.

Acknowledgment
We would like to thank Yizhou Shan’ thesis committee mem-
bers, Geoffrey M. Voelker, Stefan Savage, Alex C. Snoeren,
and George C. Papen. Their insightful questions during his
defense motivate us to write this paper. We thank the anony-
mous reviewers, Sanidhya Kashyap, Chenxi Wang, Qizhen
Zhang, and Pengfei Zuo for their valuable feedback. This ma-
terial is based upon work supported by the National Science
Foundation under the following grant: NSF 2022675.

APSys ’22, August 23–24, 2022, Virtual Event, Singapore Yizhou Shan, Will Lin, Zhiyuan Guo, and Yiying Zhang

References

[1] CIRCT. https://circt.llvm.org/.
[2] NVIDIA BLUEFIELD DATA PROCESSING UNITS.

https://www.nvidia.com/en-us/networking/products/data-
processing-unit/.

[3] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong
Luo, Amy Ousterhout, Marcos K. Aguilera, Aurojit Panda,
Sylvia Ratnasamy, and Scott Shenker. Can far memory improve
job throughput? In Proceedings of the Fifteenth European
Conference on Computer Systems, EuroSys ’20, 2020.

[4] Amazon. Amazon EC2 Elastic GPUs. https://aws.amazon.com/
ec2/elastic-gpus/.

[5] Amazon. AWS Nitro System. https://aws.amazon.com/ec2/
nitro/.

[6] Amazon. Amazon s3. https://aws.amazon.com/s3/, 2019.
[7] Manikandan Arumugam, Deepak Bansal, Navdeep Bhatia,

James Boerner, Simon Capper, Changhoon Kim, Sarah Mc-
Clure, Neeraj Motwani, Ranga Narasimhan, Urvish Pan-
chal, Tommaso Pimpo, Ariff Premji, Pranjal Shrivastava, and
Rishabh Tewari. Bluebird: High-performance SDN for bare-
metal cloud services. In 19th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 22), 2022.

[8] Krste Asanović. FireBox: A Hardware Building Block for
2020 Warehouse-Scale Computers, February 2014. Keynote
talk at the 12th USENIX Conference on File and Storage Tech-
nologies (FAST ’14).

[9] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick
Jauernig, Matthias Klimmek, Ahmad-Reza Sadeghi, and Em-
manuel Stapf. CURE: A security architecture with CUstomiz-
able and resilient enclaves. In 30th USENIX Security Sym-
posium (USENIX Security 21), pages 1073–1090. USENIX
Association, August 2021.

[10] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel
Cletheroe, Istvan Haller, Krzysztof Jozwik, Fotini Karinou, So-
phie Lange, Benn Thomsen, Kai Shi, and Hugh Williams. Sir-
ius: A flat datacenter network with nanosecond optical switch-
ing. In SIGCOMM 2020. ACM, August 2020.

[11] Laurent Bindschaedler, Ashvin Goel, and Willy Zwaenepoel.
Hailstorm: Disaggregated compute and storage for distributed
lsm-based databases. In Proceedings of the Twenty-Fifth In-
ternational Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’20, 2020.

[12] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McK-
eown, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin
Vahdat, George Varghese, and David Walker. P4: Programming
protocol-independent packet processors. SIGCOMM Comput.
Commun. Rev., 2014.

[13] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese,
Nick McKeown, Martin Izzard, Fernando Mujica, and Mark
Horowitz. Forwarding metamorphosis: Fast programmable
match-action processing in hardware for sdn. SIGCOMM Com-
put. Commun. Rev., 2013.

[14] Costan, Victor and Devadas, Srinivas. Intel SGX Explained.
https://eprint.iacr.org/2016/086.pdf.

[15] CXL Consortium. https://www.computeexpresslink.org/.

[16] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagap-
pan, Brian Kroth, Andrea Arpaci-Dusseau, and Remzi Arpaci-
Dusseau. From WiscKey to bourbon: A learned index for
Log-Structured merge trees. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20).

[17] Nathan Farrington, George Porter, Sivasankar Radhakrishnan,
Hamid Hajabdolali Bazzaz, Vikram Subramanya, Yeshaiahu
Fainman, George Papen, and Amin Vahdat. Helios: A hybrid
electrical/optical switch architecture for modular data centers.
SIGCOMM Comput. Commun. Rev., 2010.

[18] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road
to sdn: An intellectual history of programmable networks. SIG-
COMM Comput. Commun. Rev., 2014.

[19] Andrew D. Ferguson, Steve Gribble, Chi-Yao Hong, Charles
Killian, Waqar Mohsin, Henrik Muehe, Joon Ong, Leon
Poutievski, Arjun Singh, Lorenzo Vicisano, Richard Alimi,
Shawn Shuoshuo Chen, Mike Conley, Subhasree Mandal,
Karthik Nagaraj, Kondapa Naidu Bollineni, Amr Sabaa, Shi-
dong Zhang, Min Zhu, and Amin Vahdat. Orion: Google’s
Software-Defined networking control plane. In 18th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 21), 2021.

[20] Nicole Fern, Ismail San, Çetin Kaya Koç, and Kwang-Ting Tim
Cheng. Hiding hardware trojan communication channels in
partially specified soc bus functionality. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
36(9):1435–1444, 2017.

[21] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur,
Derek Chiou, Alireza Dabagh, Mike Andrewartha, Hari
Angepat, Vivek Bhanu, Adrian Caulfield, Eric Chung, Har-
ish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey,
Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu
Padhye, Gautham Popuri, Shachar Raindel, Tejas Sapre, Mark
Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth Srivastava,
Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg. Azure
Accelerated Networking: SmartNICs in the Public Cloud. In
15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’18).

[22] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Car-
reira, Sangjin Han, Rachit Agarwal, Sylvia Ratnasamy, and
Scott Shenker. Network requirements for resource disaggre-
gation. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), 2016.

[23] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng
Zhang, Wenwen Peng, Bo Li, Yaohui Wu, Shaozong Liu, Lei
Yan, Fei Feng, Yan Zhuang, Fan Liu, Pan Liu, Xingkui Liu,
Zhongjie Wu, Junping Wu, Zheng Cao, Chen Tian, Jinbo Wu,
Jiaji Zhu, Haiyong Wang, Dennis Cai, and Jiesheng Wu. When
cloud storage meets RDMA. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 21),
2021.

[24] Dan Gibson, Hema Hariharan, Eric Lance, Moray McLaren,
Behnam Montazeri, Arjun Singh, Stephen Wang, Hassan M. G.
Wassel, Zhehua Wu, Sunghwan Yoo, Raghuraman Balasubra-
manian, Prashant Chandra, Michael Cutforth, Peter Cuy, David

https://circt.llvm.org/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://aws.amazon.com/ec2/elastic-gpus/
https://aws.amazon.com/ec2/elastic-gpus/
https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/s3/
https://eprint.iacr.org/2016/086.pdf
https://www.computeexpresslink.org/

Towards a Fully Disaggregated and Programmable Data Center APSys ’22, August 23–24, 2022, Virtual Event, Singapore

Decotigny, Rakesh Gautam, Alex Iriza, Milo M. K. Martin,
Rick Roy, Zuowei Shen, Ming Tan, Ye Tang, Monica Wong-
Chan, Joe Zbiciak, and Amin Vahdat. Aquila: A unified, low-
latency fabric for datacenter networks. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI
22), 2022.

[25] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoung-
soo Jung. Direct access, High-Performance memory disaggre-
gation with DirectCXL. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22), 2022.

[26] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth
Kandula, Changhoon Kim, Parantap Lahiri, David A. Maltz,
Parveen Patel, and Sudipta Sengupta. Vl2: A scalable and flexi-
ble data center network. In Proceedings of the ACM SIGCOMM
2009 Conference on Data Communication, SIGCOMM ’09,
2009.

[27] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang Shin. Efficient Memory Disaggregation
with Infiniswap. In Proceedings of the 14th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI

’17).
[28] Hewlett-Packard. The Machine: A New Kind of Com-

puter. http://www.hpl.hp.com/research/systems-research/
themachine/.

[29] Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely, Yige Hu,
Christopher J. Rossbach, and Emmett Witchel. Telekine: Se-
cure computing with cloud GPUs. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20).

[30] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and
Emmett Witchel. Ryoan: A distributed sandbox for untrusted
computation on secret data. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16),
pages 533–549, Savannah, GA, November 2016. USENIX
Association.

[31] Intel. Intel Unveils Infrastructure Processing Unit.
https://www.intel.com/content/www/us/en/newsroom/
news/infrastructure-processing-unit-data-center.html.

[32] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun
Lee, Robert Soulé, Changhoon Kim, and Ion Stoica. Netchain:
Scale-free sub-rtt coordination. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18),
2018.

[33] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun
Lee, Nate Foster, Changhoon Kim, and Ion Stoica. Netcache:
Balancing key-value stores with fast in-network caching. In
Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, pages 121–136, 2017.

[34] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson,
Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia,
Nan Boden, Al Borchers, Rick Boyle, Pierre luc Cantin, Clif-
ford Chao, Chris Clark, Jeremy Coriell, Matt Dau Mike Daley,
Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajen-
dra Gottipati, William Gulland, Robert Hagmann, C. Richard
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian
Ibarz, Aaron Jaffey, Alek Jaworski, Harshit Khaitan Alexan-
der Kaplan, Andy Koch, Naveen Kumar, Steve Lacy, James

Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu,
Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Mag-
giore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark
Omernick, Narayana Penukonda, Andy Phelps, Matt Ross
Jonathan Ross, Amir Salek, Emad Samadiani, Chris Severn,
Gregory Sizikov, Matthew Snelham, Jed Souter, Andy Swing
Dan Steinberg, Mercedes Tan, Gregory Thorson, Bo Tian, Ho-
ria Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Wal-
ter Wang, Eric Wilcox, and Doe Hyun Yoon. In-Datacenter
Performance Analysis of a Tensor Processing Unit. In Proceed-
ings of the 44th Annual International Symposium on Computer
Architecture (ISCA ’17).

[35] K. Katrinis, D. Syrivelis, D. Pnevmatikatos, G. Zervas,
D. Theodoropoulos, I. Koutsopoulos, K. Hasharoni, D. Raho,
C. Pinto, F. Espina, S. Lopez-Buedo, Q. Chen, M. Nemirovsky,
D. Roca, H. Klos, and T. Berends. Rack-scale disaggregated
cloud data centers: The dReDBox project vision. In 2016 De-
sign, Automation Test in Europe Conference Exhibition (DATE

’16).
[36] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael

Wei, Eric Schkufza, and Christopher J. Rossbach. Sharing,
protection, and compatibility for reconfigurable fabric with
amorphos. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), 2018.

[37] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Strib-
ling, Leon Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro
Iwata, Hiroaki Inoue, Takayuki Hama, and Scott Shenker. Onix:
A distributed control platform for large-scale production net-
works. In Proceedings of the 9th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’10, 2010.

[38] Sam Kumar, David E. Culler, and Raluca Ada Popa. MAGE:
Nearly zero-cost virtual memory for secure computation. In
15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21), pages 367–385. USENIX Associa-
tion, July 2021.

[39] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen,
Andy Davis, Jacques Pienaar, River Riddle, Tatiana Shpeis-
man, Nicolas Vasilache, and Oleksandr Zinenko. Mlir: A com-
piler infrastructure for the end of moore’s law. arXiv preprint
arXiv:2002.11054, 2020.

[40] Chris Lattner, Jacques A. Pienaar, Mehdi Amini, Uday Bond-
hugula, River Riddle, Albert Cohen, Tatiana Shpeisman, Andy
Davis, Nicolas Vasilache, and Oleksandr Zinenko. MLIR: A
compiler infrastructure for the end of moore’s law. CoRR,
abs/2002.11054, 2020.

[41] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste
Asanović, and Dawn Song. Keystone: An open framework for
architecting trusted execution environments. In Proceedings
of the Fifteenth European Conference on Computer Systems,
EuroSys ’20, 2020.

[42] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag Khandel-
wal, Lin Zhong, and Abhishek Bhattacharjee. Mind: In-network
memory management for disaggregated data centers. In Pro-
ceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, SOSP ’21, 2021.

http://www.hpl.hp.com/research/systems-research/themachine/
http://www.hpl.hp.com/research/systems-research/themachine/
https://www.intel.com/content/www/us/en/newsroom/news/infrastructure-processing-unit-data-center.html
https://www.intel.com/content/www/us/en/newsroom/news/infrastructure-processing-unit-data-center.html

APSys ’22, August 23–24, 2022, Virtual Event, Singapore Yizhou Shan, Will Lin, Zhiyuan Guo, and Yiying Zhang

[43] Huaicheng Li, Daniel S Berger, Stanko Novakovic, Lisa Hsu,
Dan Ernst, Pantea Zardoshti, Monish Shah, Ishwar Agar-
wal, Mark Hill, Marcus Fontoura, et al. First-generation
memory disaggregation for cloud platforms. arXiv preprint
arXiv:2203.00241, 2022.

[44] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ran-
ganathan, Steven K. Reinhardt, and Thomas F. Wenisch. Disag-
gregated Memory for Expansion and Sharing in Blade Servers.
In Proceedings of the 36th Annual International Symposium
on Computer Architecture (ISCA ’09).

[45] LISA’17. Disaggregating the Network: Switching as a Ser-
vice. https://www.usenix.org/conference/lisa17/conference-
program/presentation/schiff.

[46] Haoran Ma, Shi Liu, Chenxi Wang, Yifan Qiao, Michael D.
Bond, Stephen M. Blackburn, Miryung Kim, and Guo-
qing Harry Xu. Mako: A low-pause, high-throughput evac-
uating collector for memory-disaggregated datacenters. In
Proceedings of the 43rd ACM SIGPLAN International Confer-
ence on Programming Language Design and Implementation,
PLDI 2022, 2022.

[47] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes
Weiner, Niket Agarwal, Pallab Bhattacharya, Chris Petersen,
Mosharaf Chowdhury, Shobhit Kanaujia, and Prakash Chauhan.
Tpp: Transparent page placement for cxl-enabled tiered mem-
ory. arXiv preprint arXiv:2206.02878, 2022.

[48] Nvidia. Cuda Compiler Driver NVCC. https://docs.nvidia.com/
cuda/pdf/CUDA_Compiler_Driver_NVCC.pdf, 2022. [Online;
accessed 19-July-2022].

[49] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi
Lin, Lin Ma, Prashanth Menon, Todd C Mowry, Matthew Per-
ron, Ian Quah, et al. Self-driving database management systems.
In CIDR, volume 4, page 1, 2017.

[50] Parthasarathy Ranganathan, Daniel Stodolsky, Jeff Calow,
Jeremy Dorfman, Marisabel Guevara, Clinton Wills Smullen IV,
Aki Kuusela, Raghu Balasubramanian, Sandeep Bhatia,
Prakash Chauhan, et al. Warehouse-scale video acceleration:
co-design and deployment in the wild. In Proceedings of the
26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, 2021.

[51] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and
Adam Belay. AIFM: High-performance, application-integrated
far memory. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), 2020.

[52] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srini-
vas Devadas, Ronald Dreslinski, Christopher Peikert, and
Daniel Sanchez. F1: A fast and programmable accelerator
for fully homomorphic encryption. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture,
MICRO ’21, page 238–252, 2021.

[53] Eric Schkufza, Michael Wei, and Christopher J. Rossbach. Just-
in-time compilation for verilog: A new technique for improving
the fpga programming experience. ASPLOS ’19, 2019.

[54] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandel-
wal, Joao Carreira, Neeraja J Yadwadkar, Raluca Ada Popa,
Joseph E Gonzalez, Ion Stoica, and David A Patterson. What
serverless computing is and should become: The next phase of

cloud computing. Communications of the ACM, 64(5):76–84,
2021.

[55] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang.
Legoos: A disseminated, distributed OS for hardware resource
disaggregation. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’18).

[56] Yizhou Shan, Will Lin, Ryan Kosta, Arvind Krishnamurthy,
and Yiying Zhang. Disaggregating and Consolidating
Network Functionalities with SuperNIC. arXiv preprint
arXiv:2109.07744, 2021.

[57] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa,
Ki Suh Lee, Han Wang, Rachit Agarwal, and Hakim Weath-
erspoon. Shoal: A Network Architecture for Disaggregated
Racks. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’19).

[58] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, and
Gustavo Alonso. Strom: Smart remote memory. In Proceedings
of the Fifteenth European Conference on Computer Systems,
EuroSys ’20, 2020.

[59] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby
Armistead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Fel-
derman, Paulie Germano, Anand Kanagala, Jeff Provost, Jason
Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle, Stephen
Stuart, and Amin Vahdat. Jupiter rising: A decade of clos
topologies and centralized control in google’s datacenter net-
work. In Sigcomm ’15, 2015.

[60] Emil Stefanov, Marten Van Dijk, Elaine Shi, T.-H. Hubert Chan,
Christopher Fletcher, Ling Ren, Xiangyao Yu, and Srinivas De-
vadas. Path oram: An extremely simple oblivious ram protocol.
J. ACM, 65(4), apr 2018.

[61] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Disaggregat-
ing Persistent Memory and Controlling Them Remotely: An
Exploration of Passive Disaggregated Key-Value Stores. In
2020 USENIX Annual Technical Conference (USENIX ATC
20), 2020.

[62] Lluís Vilanova, Lina Maudlej, Shai Bergman, Till Miemietz,
Matthias Hille, Nils Asmussen, Michael Roitzsch, Hermann
Härtig, and Mark Silberstein. Slashing the disaggregation tax
in heterogeneous data centers with fractos. In Proceedings of
the Seventeenth European Conference on Computer Systems,
2022.

[63] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton:
Trusted execution environments on GPUs. In 13th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 18).

[64] Midhul Vuppalapati, Kushal Babel, Anurag Khandelwal, and
Rachit Agarwal. SHORTSTACK: Distributed, fault-tolerant,
oblivious data access. In 16th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 22), pages
719–734, Carlsbad, CA, July 2022. USENIX Association.

[65] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan
Truong, Ashish Motivala, and Thierry Cruanes. Building an
elastic query engine on disaggregated storage. In 17th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 20), 2020.

https://www.usenix.org/conference/lisa17/conference-program/presentation/schiff
https://www.usenix.org/conference/lisa17/conference-program/presentation/schiff
https://docs.nvidia.com/cuda/pdf/CUDA_Compiler_Driver_NVCC.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Compiler_Driver_NVCC.pdf

Towards a Fully Disaggregated and Programmable Data Center APSys ’22, August 23–24, 2022, Virtual Event, Singapore

[66] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan
Ruan, Khanh Nguyen, Michael D. Bond, Ravi Netravali,
Miryung Kim, and Guoqing Harry Xu. Semeru: A memory-
disaggregated managed runtime. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20),
2020.

[67] Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao, Jonathan Eyolf-
son, Christian Navasca, Shan Lu, and Guoqing Harry Xu. Mem-
Liner: Lining up tracing and application for a Far-Memory-
Friendly runtime. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), 2022.

[68] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A write-
optimized distributed b+ tree index on disaggregated memory.
arXiv preprint arXiv:2112.07320, 2021.

[69] Weitao Wang, Dingming Wu, Sushovan Das, Afsaneh Rahbar,
Ang Chen, and T. S. Eugene Ng. RDC: Energy-Efficient data
center network congestion relief with topological reconfigura-
bility at the edge. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), 2022.

[70] Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Zhijao Jia,
Dheevatsa Mudigere, Ying Zhang, Anthony Kewitsch, and
Manya Ghobadi. Topoopt: Optimizing the network topology
for distributed dnn training. arXiv preprint arXiv:2202.00433,
2022.

[71] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, Xi-
aoFeng Wang, Vincent Bindschaedler, Haixu Tang, and Carl A.
Gunter. Leaky cauldron on the dark land: Understanding mem-
ory side-channel hazards in sgx. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications
Security, CCS ’17, page 2421–2434, 2017.

[72] Zeke Wang, Hongjing Huang, Jie Zhang, Fei Wu, and Gustavo
Alonso. FpgaNIC: An FPGA-based versatile 100gb SmartNIC
for GPUs. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22), 2022.

[73] Yue Zha and Jing Li. Virtualizing fpgas in the cloud. In
Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’20, 2020.

[74] Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu. Ford:
Fast one-sided rdma-based distributed transactions for disag-
gregated persistent memory. In 20th USENIX Conference on
File and Storage Technologies (FAST 22). USENIX Association.

[75] Qizhen Zhang, Yifan Cai, Xinyi Chen, Sebastian Angel, Ang
Chen, Vincent Liu, and Boon Thau Loo. Understanding the
effect of data center resource disaggregation on production
dbmss. Proc. VLDB Endow., may 2020.

[76] Yiying Zhang and Yutong Huang. " learned" operating systems.
ACM SIGOPS Operating Systems Review, 53(1):40–45, 2019.

[77] Mark Zhao, Mingyu Gao, and Christos Kozyrakis. Shef:
Shielded enclaves for cloud fpgas. ASPLOS 2022.

[78] Mark Zhao and G. Edward Suh. Fpga-based remote power
side-channel attacks. In 2018 IEEE Symposium on Security
and Privacy (SP).

[79] Mohammad Shahrad Zerui Wei Bili Dong Jinmou Li Ishaan
Pota Harry Xu Yiying Zhang Zhiyuan Guo, Zachary Blanco.
Resource-Centric Serverless Computing. arXiv preprint

arXiv:2206.13444, 2022.
[80] Zhiyuan Guo and Yizhou Shan and Xuhao Luo and Yutong

Huang and Yiying Zhang. Clio: A hardware-software co-
designed disaggregated memory system. In the 27th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’22), Lausanne,
Switzerland, March 2022.

[81] Yang Zhou, Hassan M. G. Wassel, Sihang Liu, Jiaqi Gao, James
Mickens, Minlan Yu, Chris Kennelly, Paul Turner, David E.
Culler, Henry M. Levy, and Amin Vahdat. Carbink: Fault-
Tolerant far memory. In 16th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 22), 2022.

[82] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang, and
Yu Hua. One-sided RDMA-Conscious extendible hashing for
disaggregated memory. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), 2021.

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Programmable and Reconfigurable Network
	2.2 Hardware Resource Disaggregation
	2.3 Programming Models and Runtime Support

	3 FDP-DC Design
	3.1 Abstractions and Usage Models
	3.2 Intermediate Representation
	3.3 Hardware Infrastructure
	3.4 Operating Systems for FDP-DC

	4 Conclusion

