
19/07/2020 I usually implement a - Intel Community

https://community.intel.com/t5/forums/forumtopicprintpage/board-id/moderncode-parallel-architectures/message-id/6886/print-sing… 1/3

Intel Community Software Development Topics Intel® Moderncode for Parallel Architectures

 I usually implement a

/ / 
/

Black Belt
McCalpinJohn

 11-15-2016 04:21 PM
94 Views

I usually implement a
I usually implement a producer/consumer code using "data" and "flag" in separate cache lines.
This enables the consumer to spin on the flag while the producer updates the data. When the
data is ready, the producer writes the flag variable. At a low level, the steps are:

1. The producer executes a store instruction, which misses in its L1 Data Cache and L2 cache,
thus generating an RFO transaction on the ring.

1. The data for the store is held in a store buffer at least until the producer core has write
permission on the cache line in its own L1 Data Cache.

2. The data for the store may be held in the store buffer for longer periods, awaiting other
potential stores to the same cache line.

2. The RFO traverses the ring to find the L3 slice that owns the physical address being used,
and the RFO hits in the L3.

3. The L3 has the data, but also sees that it is marked as being in a clean state in one or more
processor private caches, so it issues an invalidate on the cache line containing the flag
variable.

1. The L3 may or may not have a way of tracking whether the cache line containing the
flag variable is shared in another chip.

2. The L3 may have directories that track which cores may have a copy of the cache line
containing the flag variable. If there are directories, the invalidates may be targeted at
the specific caches that may hold the cache line, rather than being broadcast to all
cores.

3. The L3 may send the data for the cache line containing the flag to the producer's cache
at this time, but that data cannot be used until the coherence transactions are
complete.

4. The consumer receives the invalidate, invalidates its copy of the flag line, and responds to
the L3 that the line has been invalidated.

1. Immediately after responding to the L3 that the line has been invalidated, the spin loop
in the consumer tries to load the flag variable again.

5. The L3 receives the invalidation acknowledgements from all the cores that may have had a
shared copy of the line, and notifies the producer core that it now has write permission on
the cache line containing the flag data.

1. If you are lucky, the producer core will write the flag variable from the store buffer to
the L1 Data Cache immediately on receipt of permission.

2. If you are unlucky, the producing core may lose the line containing the flag variable
before the store buffer is written to the L1 Data Cache. I don't know if Intel processors
can do this, but I know some processors than can lose the line before dumping the
store buffer.

https://community.intel.com/
https://community.intel.com/t5/Software-Development-Topics/ct-p/software-dev-topics
https://community.intel.com/t5/Intel-Moderncode-for-Parallel/bd-p/moderncode-parallel-architectures
https://community.intel.com/t5/Intel-Moderncode-for-Parallel/Core-to-Core-Communication-Latency-in-Skylake-Kaby-Lake/m-p/1061661#M6886
https://community.intel.com/t5/user/viewprofilepage/user-id/89357
https://community.intel.com/t5/user/viewprofilepage/user-id/89357

19/07/2020 I usually implement a - Intel Community

https://community.intel.com/t5/forums/forumtopicprintpage/board-id/moderncode-parallel-architectures/message-id/6886/print-sing… 2/3

6. Very shortly after sending the write permission notification to the producer core, the L3 will
receive a read request from the consumer core for the same cache line containing the flag.

1. Depending on the implementation, several different things might happen.
2. One option is for the L3 to hold the line containing the flag variable in a "transient"

state while it waits for an acknowledgement from the Producer core that it has received
the write permission message. In this case the L3 will either:

1. Stall the read request from the consumer core, or
2. NACK the read request from the consumer core (i.e., tell it to try again).

3. Another option is for the L3 to immediately process the read request and send an
intervention/downgrade request for the cache line containing the flag variable to the
producer core's cache.

7. In the "lucky" case, the intervention/downgrade request generated by the read from the
consumer core will get the new value of the cache line containing the flag variable and return
it to the consumer core and to the L3 slice that owns that physical address.

1. Various implementations have specific ordering requirements here that determine
whether the cache line must be sent to the L3 first, then the to consumer core, or
whether it can be sent to both at the same time.

2. Some implementations require an extra handshaking step after the consumer core
receives the data, before the L3 will give it permission to use the data. (This is more
common in the case of a store than a read.)

8. Finally the consumer core gets the new value of the flag variable and sees that it has
changed! The data is now ready!

9. The spin loop on the consumer core now exits, which incurs a 20-cycle mispredicted branch
delay.

10. The consumer core now executes a load instruction to get the data. This misses in the
consumer's L1 and L2 caches and generates a read request on the ring.

11. The read request traverses the ring to the slice that owns the physical address of the cache
line containing the data (which may be a different slice than the one controlling the cache
line containing the flag), and the read request hits in the L3.

12. The data in the L3 is stale, but the L3 knows exactly which core has write permission on the
cache line containing the data, so it issues an intervention/downgrade on the cache line
containing the data and targeting the cache of the producer core.

13. The cache(s) of the producer core receive the intervention/downgrade request and return the
new value of the cache line containing the data variable to the L3, simultaneously
downgrading the permissions on the line so that it is now "read-only" in the producer's
caches.

14. As was the case for the cache line containing the flag variable, the cache line containing the
data variable makes its way to both the L3 slice that owns the physical address and the
consumer core that requested the data.

15. The cache line containing the data arrives in the consumer core's cache, and the load
instruction is allowed to complete.

16. Once the consumer core has gotten the data safely into a register, it typically has to re-write
the flag variable to let the producer core know that the value has been consumed and that
the producer core is free to write to the cache line containing the data variable again.

19/07/2020 I usually implement a - Intel Community

https://community.intel.com/t5/forums/forumtopicprintpage/board-id/moderncode-parallel-architectures/message-id/6886/print-sing… 3/3

1. This requires the consumer to make an "upgrade" request on the cache line containing
the flag, so it can write to it. This is similar to the sequence above, but since the
consumer already has the data, it does not need the L3 to send it again -- it only needs
to wait until all other cores have acknowledge the invalidate before it can write to the
flag line.

2. Double-buffering can be used to avoid this extra transaction -- if the consumer uses a
different set of addresses to send data back to the producer, then the fact that the
producer has received another message from the consumer means that the consumer
must have finished using the original data buffer, so it is safe for the producer to use it
again.

There are many variants and many details that can be non-intuitive in an actual implementation.
These often involve extra round trips required to ensure ordering in ugly corner cases. A common
example is maintaining global ordering across stores that are handled by different coherence
controllers. This can be different L3 slices (and/or Home Agents) in a single package, or the more
difficult case of stores that alternate across independent packages.

There are fewer steps in the case where the "data" and "flag" are in the same cache line, but extra
care needs to be taken in that case because it is easier for the polling activity of the consumer to
take the cache line away from the producer before it has finished doing the updates to the data
part of the cache line. This can result in more performance variability and reduced total
performance, especially in cases with multiplier producers and multiple consumers (with locks,
etc.).

"Dr. Bandwidth"

0 Kudos

Share Reply

https://community.intel.com/t5/forums/forumtopicprintpage.kudosbuttonv2.kudoentity:kudoentity/kudosable-gid/1061661?t:ac=board-id/moderncode-parallel-architectures/message-id/6886/print-single-message/true/page/1&t:cp=kudos/contributions/tapletcontributionspage
http://www.addthis.com/bookmark.php?url=https%3A%2F%2Fcommunity.intel.com%2Ft5%2FIntel-Moderncode-for-Parallel%2FCore-to-Core-Communication-Latency-in-Skylake-Kaby-Lake%2Ftd-p%2F1061658&title=I+usually+implement+a&username=PoweredByLithium
https://community.intel.com/t5/forums/replypage/board-id/moderncode-parallel-architectures/message-id/6886
https://khoros.com/powered-by-khoros

