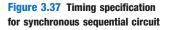
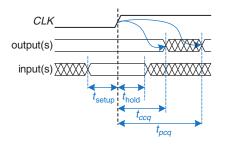
3.5.1 The Dynamic Discipline


So far, we have focused on the functional specification of sequential circuits. Recall that a synchronous sequential circuit, such as a flip-flop or FSM, also has a timing specification, as illustrated in Figure 3.37. When the clock rises, the output (or outputs) may start to change after the clock-to-Q contamination delay, t_{ccq} , and must definitely settle to the final value within the clock-to-Q propagation delay, t_{pcq} . These represent the fastest and slowest delays through the circuit, respectively. For the circuit to sample its input correctly, the input (or inputs) must have stabilized at least some setup time, t_{setup} , before the rising edge of the clock and must remain stable for at least some hold time, t_{hold} , after the rising edge of the clock. The sum of the setup and hold times is called the aperture time of the circuit, because it is the total time for which the input must remain stable.


The *dynamic discipline* states that the inputs of a synchronous sequential circuit must be stable during the setup and hold aperture time around the clock edge. By imposing this requirement, we guarantee that the flipflops sample signals while they are not changing. Because we are concerned only about the final values of the inputs at the time they are sampled, we can treat signals as discrete in time as well as in logic levels.

3.5.2 System Timing

The *clock period* or *cycle time*, T_c , is the time between rising edges of a repetitive clock signal. Its reciprocal, $f_c = 1/T_c$, is the *clock frequency*. All else being the same, increasing the clock frequency increases the work that a digital system can accomplish per unit time. Frequency is measured in units of Hertz (Hz), or cycles per second: 1 megahertz (MHz) = 10^6 Hz, and 1 gigahertz (GHz) = 10^9 Hz.

Figure 3.38(a) illustrates a generic path in a synchronous sequential circuit whose clock period we wish to calculate. On the rising edge of the clock, register R1 produces output (or outputs) Q1. These signals enter a block of combinational logic, producing D2, the input (or inputs) to register R2. The timing diagram in Figure 3.38(b) shows that each output signal may start to change a contamination delay after its input

142

In the three decades from when one of the authors' families bought an Apple II+ computer to the present time of writing, microprocessor clock frequencies have increased from 1 MHz to several GHz, a factor of more than 1000. This speedup partially explains the revolutionary changes computers have made in society.

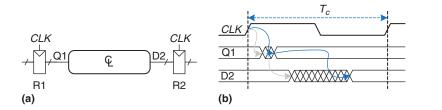


Figure 3.38 Path between registers and timing diagram

changes and settles to the final value within a propagation delay after its input settles. The gray arrows represent the contamination delay through R1 and the combinational logic, and the blue arrows represent the propagation delay through R1 and the combinational logic. We analyze the timing constraints with respect to the setup and hold time of the second register, R2.

Setup Time Constraint

Figure 3.39 is the timing diagram showing only the maximum delay through the path, indicated by the blue arrows. To satisfy the setup time of R2, *D*2 must settle no later than the setup time before the next clock edge. Hence, we find an equation for the minimum clock period:

$$T_c \ge t_{pcq} + t_{pd} + t_{setup} \tag{3.13}$$

In commercial designs, the clock period is often dictated by the Director of Engineering or by the marketing department (to ensure a competitive product). Moreover, the flip-flop clock-to-Q propagation delay and setup time, t_{pcq} and t_{setup} , are specified by the manufacturer. Hence, we rearrange Equation 3.13 to solve for the maximum propagation delay through the combinational logic, which is usually the only variable under the control of the individual designer.

$$t_{pd} \le T_c - (t_{pcq} + t_{\text{setup}}) \tag{3.14}$$

The term in parentheses, $t_{pcq} + t_{setup}$, is called the *sequencing overhead*. Ideally, the entire cycle time T_c would be available for useful

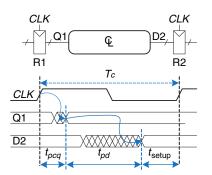


Figure 3.39 Maximum delay for setup time constraint

144 CHAPTER THREE Sequential Logic Design

computation in the combinational logic, t_{pd} . However, the sequencing overhead of the flip-flop cuts into this time. Equation 3.14 is called the *setup time constraint* or *max-delay constraint*, because it depends on the setup time and limits the maximum delay through combinational logic.

If the propagation delay through the combinational logic is too great, D2 may not have settled to its final value by the time R2 needs it to be stable and samples it. Hence, R2 may sample an incorrect result or even an illegal logic level, a level in the forbidden region. In such a case, the circuit will malfunction. The problem can be solved by increasing the clock period or by redesigning the combinational logic to have a shorter propagation delay.

Hold Time Constraint

The register R2 in Figure 3.38(a) also has a *hold time constraint*. Its input, D2, must not change until some time, t_{hold} , after the rising edge of the clock. According to Figure 3.40, D2 might change as soon as $t_{ccq} + t_{cd}$ after the rising edge of the clock. Hence, we find

$$t_{ccq} + t_{cd} \ge t_{\text{hold}} \tag{3.15}$$

Again, t_{ccq} and t_{hold} are characteristics of the flip-flop that are usually outside the designer's control. Rearranging, we can solve for the minimum contamination delay through the combinational logic:

$$t_{cd} \ge t_{\text{hold}} - t_{ccq} \tag{3.16}$$

Equation 3.16 is also called the *hold time constraint* or *min-delay constraint* because it limits the minimum delay through combinational logic.

We have assumed that any logic elements can be connected to each other without introducing timing problems. In particular, we would expect that two flip-flops may be directly cascaded as in Figure 3.41 without causing hold time problems.

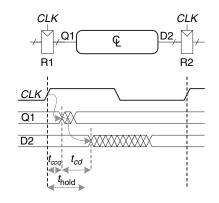


Figure 3.40 Minimum delay for hold time constraint

In such a case, $t_{cd} = 0$ because there is no combinational logic between flip-flops. Substituting into Equation 3.16 yields the requirement that

$$t_{\text{hold}} \le t_{ccq} \tag{3.17}$$

In other words, a reliable flip-flop must have a hold time shorter than its contamination delay. Often, flip-flops are designed with $t_{hold} = 0$, so that Equation 3.17 is always satisfied. Unless noted otherwise, we will usually make that assumption and ignore the hold time constraint in this book.

Nevertheless, hold time constraints are critically important. If they are violated, the only solution is to increase the contamination delay through the logic, which requires redesigning the circuit. Unlike setup time constraints, they cannot be fixed by adjusting the clock period. Redesigning an integrated circuit and manufacturing the corrected design takes months and millions of dollars in today's advanced technologies, so *hold time violations* must be taken extremely seriously.

Putting It All Together

Sequential circuits have setup and hold time constraints that dictate the maximum and minimum delays of the combinational logic between flip-flops. Modern flip-flops are usually designed so that the minimum delay through the combinational logic is 0—that is, flip-flops can be placed back-to-back. The maximum delay constraint limits the number of consecutive gates on the critical path of a high-speed circuit, because a high clock frequency means a short clock period.

Example 3.10 TIMING ANALYSIS

Ben Bitdiddle designed the circuit in Figure 3.42. According to the data sheets for the components he is using, flip-flops have a clock-to-Q contamination delay of 30 ps and a propagation delay of 80 ps. They have a setup time of 50 ps and a hold time of 60 ps. Each logic gate has a propagation delay of 40 ps and a

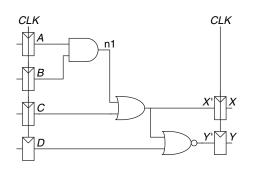


Figure 3.42 Sample circuit for timing analysis

Figure 3.41 Back-to-back flip-flops