
Practical Notes
on the Virtualization Stack

-- QEMU, KVM, IOMMU, and more

Yizhou Shan
syzwhat@gmail.com

Created: Jan 25, 2020
Last Updated: Jun 30, 2021

Table of Content
​1.​ Introduction

​2.​ List of Open Source Projects

​3.​ QEMU Source Code Study
​3.1.​ References
​3.2.​ Code Layout
​3.3.​ High-Level Summary

​4.​ I/O Device Virtualization
​4.1.​ Models
​4.2.​ QEMU Device Emulation Design
​4.3.​ QEMU Device Emulation Implementation (Code)
​4.4.​ QEMU + KVM Implementation Code Flow
​4.5.​ virtio/vhost (Paravirtualization for devices drivers):
​4.6.​ IOMMU

​4.6.1.​ dma_map
​4.6.2.​ QEMU vIOMMU Emulation
​4.6.3.​ Nested Translation in IOMMU
​4.6.4.​ Device-TLB
​4.6.5.​ References:

​4.7.​ VFIO
​4.8.​ Samecore v.s. Sidecore Emulation

​5.​ KVM

​6.​ libvirt and virsh

​7.​ Misc Knowledge
​7.1.​ Timer Interrupt and IPI delivery to VMs

mailto:syzwhat@gmail.com

​1.​ Introduction
This is a scratchy and raw note about QEMU and KVM. It tries to explain how QEMU
interacts with KVM, and some code snippets from both QEMU and Linux kernel KVM
modules.

Honestly, I didn’t fully understand the whole QEMU/KVM thing the whole time, until I decided
to take a deep tour recently. End of the day, I’m satisfied, mostly. I now know how QEMU
invokes KVM, how KVM launches guests, how KVM handles vmexit, and how vmexit
translates to userspace-visible `KVM_EXIT_REASON` and so on. More importantly, I took a
deep dive into how the device is emulated in QEMU. Specifically, IO and MMIO emulation.

​2.​ List of Open Source Projects
If you want to develop a hypervisor, or a VMM, most likely you can find codes and
references in the following projects.

1. Wenzel/awesome-virtualization: Collection of resources about Virtualization
2. QEMU
3. https://github.com/cloud-hypervisor/cloud-hypervisor
4. Xen-PV, Xen-HVM
5. Rust-VMM, Firecracker, Cloud-Hypervisor
6. https://projectacrn.org/ Good documentation!
7. Documentation

a. Red Hat Virtualization. Good ones!
b. Intel Virtualization Technology (Intel VT) Hub
c. Intel Vt-d Specification, 2019
d. PCI-SIG SR-IOV Primer from Intel, 2011 (Auto download pdf)
e. Intel White Paper: Enabling Intel® Virtualization Technology Features and

Benefits

​3.​ QEMU Source Code Study

​3.1.​ References
- Qemu Detailed Study. Some pointers to the main loop flow, TCG flow.
- QEMU Code Overview Architecture & internals tour
- QEMU Internals: Overall architecture and threading model.

- There are two mechanisms for executing guest code: Tiny Code Generator
(TCG) and KVM.

- The “main” queue thread runs a main loop
- Devices

- QEMU’s new device model qdev

https://github.com/Wenzel/awesome-virtualization
https://github.com/lastweek/source-qemu
https://github.com/cloud-hypervisor/cloud-hypervisor
https://projectacrn.org/
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.3/
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://software.intel.com/sites/default/files/managed/c5/15/vt-directed-io-spec.pdf
https://www.intel.com/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf?asset=12539
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.pdf
https://lists.gnu.org/archive/html/qemu-devel/2011-04/pdfhC5rVdz7U8.pdf
https://vmsplice.net/~stefan/qemu-code-overview.pdf
http://blog.vmsplice.net/2011/03/qemu-internals-overall-architecture-and.html
http://www.linux-kvm.org/images/f/fe/2010-forum-armbru-qdev.pdf

- Virtio: An I/O virtualization framework for Linux
- Also the QEMU device will “fire” interrupts, via Linux signals to the main loop.

​3.2.​ Code Layout
- `ui/` has VNC code and more
- `softmmu/main.c` and `softmmu/vl.c` are the main entry files
- `hw/` has the devices

- hw/net/virtio-net.c: the virtio network device. Both data and control path.
- hw/net/vhost_net.c: the vhost network device. The one deal with the host

vhost device driver, this file should only have the control plane stuff to handle
PCIe control access.

- KVM invocations at `accel/kvm/*.c`
- BIOS binary at `pc-bios/`. Almost all files are in `.bin` and `.rom` format.
- Devices

- `hw/char/serial-isa.c`: serial ttyS0/ttyS1, 0x3f8 IO port.
- `hw/net/e1000.c`: the classical NIC card
- And some legacy i8294, i8295 devices
- And many more
- Vhost: QEMU Internals: vhost architecture

- Memory Model
- You must understand this if you plan on hacking QEMU.
- Guest Physical Memory Layout Management: `memory.c`
- It looks like each device claims its address via `memory_region_init_io/rw()`

API.
- For example, `hw/char/serial-isa.c` used the “memory_region_init_io”

to claim an IO port. And it registers a set of callbacks as well.
- Memory model explained: https://qemu.weilnetz.de/doc/devel/memory.html

​3.3.​ High-Level Summary
1. QEMU has many pieces, including dynamic binary translation (or tiny code

generation, or TCG), KVM acceleration, device emulation, and more helpers. From
my understanding, TCG and KVM are two exclusive modes to run guest code,
it’s either TCG or KVM.

2. QEMU runtime is mostly event-driven. QEMU uses one “main” thread to run a
repeated main loop. Inside the loop, QEMU will run the guest code, either via TCG or
via KVM. A single “main” thread can run one vCPU or multiple ones, it depends on if
CONFIG_IOTHREAD is enabled. Normal practice is one “main” thread for one vCPU.

3. Conceptually, the “main” thread loop has two user-mode contexts. One is the QEMU
context, another is the guest context, and they are exclusive. The goal is to run in
guest mode as much as possible, thus dedicating the whole pCPU to vCPU.

a. **QEMU->Guest context transition**: When the “main” thread starts (`vl.c`),
we run in QEMU context, where we first allocate/prepare misc stuff. Next call
KVM to allocate a VM. Next, the “main” thread ask KVM to start running guest
via an ioctl (i.e., `ioctl(vcpufd, KVM_RUN, NULL)`). *During this particular ioctl

https://developer.ibm.com/articles/l-virtio/
http://blog.vmsplice.net/2011/09/qemu-internals-vhost-architecture.html
https://qemu.weilnetz.de/doc/devel/memory.html

call, we transition from user-mode QEMU context to kernel mode, then the
kernel mode will transition to user-mode guest context*.

b. **Guest->QEMU context transition**: Whenever guest context incurs a
vmexit (e.g., MMIO read/write), the CPU will exit to kernel mode KVM
handlers first. Then, the KVM module will determine if this particular vmexit
should be handled by userspace (note that kernel KVM module will handle
some particular vmexit itself rather than exposing to userspace). If so, the
`ioctl()` syscall that caused the QEMU->Guest transition will return to
userspace, and then we will be back at QEMU context!. And repeat.

c. The whole thing is demonstrated use real code.
4. Other than those “main” threads, QEMU has other worker threads. The motivation is

simple, many device operations are asynchronous to guest, i.e., interrupt-based. The
“main” threads will offload some tasks to those worker threads, mostly some
asynchronous tasks. For instance, the “main” thread may offload VNC computation,
disk operation to worker threads. Upon completion, the worker threads can either
send signals or use file descriptors to notify the main thread.

5. The main loop is waiting for events, some from guest, some from worker threads,
some from timer expires. Overall, QEMU is like the Linux kernel, it needs
opportunities to gain control thus run code. And “main” thread cannot always run in
guest mode, what if guest is running spinning code, right? So QEMU has either timer
or signals to let QEMU context has a chance to run.

a. Actually, I’m not sure how this happens. The user mode QEMU cannot just
regain control. It has to be the kernel side KVM to help, right?

6. To me, with the help of KVM, the main thing left for QEMU is to emulate all the
devices. Like this blog said, QEMU will catch all the IO and MMIO accesses and
emulate the effect as they will do in the bare-metal machine.

a. “With QEMU, one thing to remember is that we are trying to emulate what an
Operating System (OS) would see on bare-metal hardware”

b. “ And at the end of the day, all virtualization really means is running a
particular set of assembly instructions (the guest OS) to manipulate locations
within a giant memory map for causing a particular set of side effects, where
QEMU is just a user-space application providing a memory map and
mimicking the same side effects you would get when executing those guest
instructions on the appropriate bare metal hardware.”

​4.​ I/O Device Virtualization
This section walks through various bits on I/O virtualization.

​4.1.​ Models
- Software-Based Emulation.

1. Traditional Device Emulation. In this case, the guest device drivers are not
aware of the virtualization environment. During runtime, the VMM
(QEMU/KVM) will trap all the IO and MMIO access and emulate the device

https://www.qemu.org/2018/02/09/understanding-qemu-devices/

behavior. The VMM emulates the I/O device to ensure compatibility and then
processes I/O operations before passing them on to the physical device
(which may be different) The downside is obvious, there will be A LOT
vmexit!.

2. Paravirtualized Device Emulation, or virtio. In this case, the guest device
drivers are aware of the virtualization environment. This approach uses a
front-end driver in the guest that works in concert with a back-end driver in the
VMM. These drivers are optimized for sharing and have the benefit of not
needing to emulate an entire device. The back-end driver communicates with
the physical device A lot of vmexits can be coalesced thus perf can be
improved.

- Hardware-assisted Emulation.
1. Direct Assignment. Let a VM directly talk to device. Thus the guest device

drivers can directly access the device configuration space to, e.g., launch a
DMA operation. The device can DMA to physical memory in a safe manner,
via IOMMU. This is enabled by Intel vt-d. Drawback: One concern with direct
assignment is that it has limited scalability; a physical device can only be
assigned to one VM.

2. SR-IOV and Direct Assignment. Incremental to above one. With SR-IOV,
each physical device can appear as multiple virtual ones. Each virtual one
can be directly assigned to one VM, and this direct assignment is using the
vt-d/IOMMU feature.

3. AWS Nitro. Details?
- Questions

- If I were to implement a “qemu” myself, except those ioctls, do I need to any
net/blk etc device emulation parts? Will those virtio in guest/host linux take
care of everything?

1. Yes, you have to! Read the virto section. Reasons: 1) there is no
complete virtio backend drivers in the kernel space. Even the vhost
only has data path, control path is still handled by userspace

2. That being said, if you want to implement a new VMM to run Linux
kernel, you will have to implement either raw emulation or virtio
backends.

3. Also I think that’s why every new VMM needs to deal with virtio and
vhost. If you check QEMU, cloud-hypervisor, ACRN etc, they all
handle these.

- SR-IOV and IOMMU: a) Find out more about the intel-iommu part, what has
been setup etc. b) Also How qemu/kvm setup the SR-IOV device? At a
high-level, it just bypass host linux. The guest can talk with device directly,
which means it can access that portion of physical memory directly. So the
trick maybe as simple as “having a valid EPT pgtables rather than the ones
would trigger MMIO faults”?

Further Reading
- PCI-SIG SR-IOV Primer from Intel, 2011. It helps to understand the difference

between SR-IOV and Intel VT-d (IOMMU).

https://www.intel.com/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf?asset=12539

- Intel Vt-d Specification, 2019

​4.2.​ QEMU Device Emulation Design
- Understanding QEMU devices.

- The best blog explaining how to emulate IO devices in general.
- Think about how the OS sees and uses devices: they either use x86 IO ports,

or use memory-mapped memory, or MMIO. So, at a high level, if we can
catch all the accesses (read/write) to MMIO and IO ports, we can emulate the
devices. And this is exactly what QEMU and KVM did!

- First off, QEMU will present the address space as the bare-metal machine
did. It will associate QEMU device emulation code to a portion of address
space, e.g., a PCIe device address range. This is done via the
`memory_region_init_io/rw()` API. All devices will claim their portion before
VM runs.

- More importantly, KVM provides an API to let users define the guest
machine’s physical memory layout, i.e.,
`ioctl(KVM_SET_USER_MEMORY_REGION)`. You will see later that KVM is
able to catch the MMIO fault in a special way, and then pass it up to QEMU.

- This naive solution is too slow, because every MMIO access results in a world
switch: guest -> host kernel -> host QEMU user context. That’s we have virtio,
paravirtualized IO devices! See the below slides

- IO Virtualization
- This is the best slides explaining **how QEMU/KVM handle MMIO/PIO**

and emulate devices! Basically, the guest driver writes to MMIO addresses,
which causes pgfault and vm exit. KVM forwards this to QEMU.

- End of the day, I now understand how QEMU manages memory models, how
it associates physical memory with devices, how QEMU registers guest
physical memory layout in KVM, how KVM exports the MMIO/IO exits to
userspace QEMU etc. I now know how it works top down, just like the second
slide.

-

https://software.intel.com/sites/default/files/managed/c5/15/vt-directed-io-spec.pdf
https://www.qemu.org/2018/02/09/understanding-qemu-devices/
https://compas.cs.stonybrook.edu/~nhonarmand/courses/sp17/cse506/slides/io_virtualization.pdf

-
- https://terenceli.github.io/%E6%8A%80%E6%9C%AF/2018/09/03/kvm-mmio

- Explains how MMIO emulation is implemented in KVM
- For a summary, the following shows the process of MMIO implementation:

1. QEMU declares a memory region
2. Guest’s first access to MMIO addr will cause an EPT violation vmexit
3. KVM constructs EPT pgtable and marks the PTE with special mark
4. Later the guest access these MMIO, it will be processed by EPT

misconfig VM-exit handler
- Virtio and vhost:

- Refer to the following sections.
- QEMU provides both. They are both the backend for the guest virtio drivers.

​4.3.​ QEMU Device Emulation Implementation (Code)
In this section, I want to take a tour on how QEMU works without accelerators like KVM. I
think at this point we already know the basic designs. Hence this section will focus on code
details. (Added on Jun 19, 2021.)

References
1. QEMU's instance_init() vs. realize() (redhat.com)

​4.4.​ QEMU + KVM Implementation Code Flow
For QEMU, KVM is a kind of accelerator. By default, QEMU uses binary translation. With
KVM, QEMU is able to run native instructions. To do so, QEMU must interact with the linux
kvm via ioctl. Also, with KVM, the device emulation flow is slightly different as it would trap to
the host kernel then bounce back to usespace QEMU.

Also note there are many examples demonstrating the KVM flow. QEMU-KVM is one, the
rust-virt vmm is also one. Generally this is where you should start from if you want to write
your own virtualization.

https://terenceli.github.io/%E6%8A%80%E6%9C%AF/2018/09/03/kvm-mmio
http://people.redhat.com/~thuth/blog/qemu/2018/09/10/instance-init-realize.html

- First, QEMU’s device models use `memory_region_init_io/rw()` to declare the IO
ports and physical memory addresses each device is operating upon. The device will
provide a set of callbacks when the read/write access happens.

- Then, inside `accel/kvm/kvm-all.c`, during preparation, QEMU will use the valid
registered `memory_region_init_io()` devices as the input, and call `KVM ioctl
KVM_SET_USER_MEMORY_REGION` to define the guest physical memory layout!
This part is very interesting!

- Finally, I think the KVM will sets the EPT pgtable accordingly, as the normal memory
probably could just go through, but the MMIO-type of memory has invalid EPT
pgtable entries which will cause VM exit (EXIT_EPT_VIOLATION and so on,)

- For instance, the part where QEMU handles IO and MMIO:

qemu: accel/kvm/kvm-all.c

switch (run->exit_reason) {
case KVM_EXIT_IO:

DPRINTF("handle_io\n");
/* Called outside BQL */
kvm_handle_io(run->io.port, attrs,

(uint8_t *)run + run->io.data_offset,
run->io.direction,
run->io.size,
run->io.count);

ret = 0;
break;

case KVM_EXIT_MMIO:
DPRINTF("handle_mmio\n");
/* Called outside BQL */
address_space_rw(&address_space_memory,

run->mmio.phys_addr, attrs,
run->mmio.data,
run->mmio.len,
run->mmio.is_write);

ret = 0;
break;

- The part where QEMU registers MMIO via KVM:

kvm_set_user_memory_region

- KVM APU, about the KVM_EXIT_MMIO:

/* KVM_EXIT_MMIO */
struct {

__u64 phys_addr;
__u8 data[8];
__u32 len;
__u8 is_write;

} mmio;

If exit_reason is KVM_EXIT_MMIO, then the vcpu has
executed a memory-mapped I/O instruction which could not be satisfied
by kvm. The 'data' member contains the written data if 'is_write' is
true, and should be filled by application code otherwise.

- KVM Internal flow. This is the transition from QEMU to guest and guest back to
QEMU. The functions are from Linux kernel, spread over `virt/kvm`,
`arch/x86/kvm/vmx/vmx.c`, `arch/x86/kvm/*`.

(Linux)
x86_emulate_instruction()

-> x86_emulate_insn
-> exec() -> IO/MMIO -> fill in the KVM_EXIT_IO info etc

(Linux)
kvm_mmu_page_fault (this is called from the VM EXIT handler array)

-> x86_emulate_instruction

(QEMU -> Linux -> QEMU)
QEMU kvm_vcpu_ioctl(cpu, KVM_RUN, 0)
-> Linux kvm_arch_vcpu_ioctl_run

-> vcpu_run
-> vcpu_enter_guest

-> kvm_x86_ops->run(vcpu); (run the guest!)
-> handle_exit_irqoff()
-> handle_exit() which is vmx_handle_exit

-> handle all the vmexit, fill in the KVM_EXIT reasons.
(kvm_vmx_exit_handlers[exit_reason](vcpu))
-> handle_ept_misconfig (just one of many handlers!)

-> kvm_mmu_page_fault
-> x86_emulate_instruction

-> x86_emulate_insn
-> exec() -> IO/MMIO -> fill KVM_EXIT_IO

(if vcpu_enter_guest returns 1, the whole thing will break the loop and return back to userspace,
where the above qemu code can inspect the KVM_EXIT reasons.)

​4.5.​ virtio/vhost (Paravirtualization for devices drivers):
Notes and references

- The original virtio protocol is not hard to understand: guest traps to KVM once it
writes to some MMIO location, then KVM returns the ioctl call, returns to QEMU
context, the QEMU emulates the device behavior.

- vhost is a specific kind of virtio where the data plane is put into host kernel space to
reduce the context switch while processing the IO request. (Will this always be on?
How to use it?)

- According to QEMU Internals: vhost architecture: the linux vhost code is not
self-contained. The kernel vhost only handles data paths. The control pach
such as PCI negotiation is still done at user QEMU context!

https://github.com/lastweek/source-qemu/blob/master/accel/kvm/kvm-all.c#L2336
https://elixir.bootlin.com/linux/v4.4/source/arch/x86/kvm/x86.c#L6783
http://blog.vmsplice.net/2011/09/qemu-internals-vhost-architecture.html

- And note that the backend drivers can be implemented in either kernel-space or
user-space, it’s just an implementation choice, as long as the backend driver follows
the protocol. However, note the difference: kernel-based backend driver incurs less
user-kernel switches:

-
- Project ACRN: Virtio devices high-level design

- One of the BEST BLOGs explaining virtio.
- QEMU Internals: vhost architecture

- One of the BEST BLOGs explaining virtio.
- “Vhost does not emulate a complete virtio PCI adapter. Instead it restricts

itself to virtqueue operations only. QEMU is still used to perform virtio feature
negotiation and live migration, for example. This means a vhost driver is not a
self-contained virtio device implementation, it depends on userspace to
handle the control plane while the data plane is done in-kernel”

- virtio: Towards a De-Facto Standard For Virtual I/O Devices
- The paper by Rusty Russell.

- Virtual I/O Device (VIRTIO) Version 1.1, 2018
- Specification..

- Red Hat Blog: Deep dive into Virtio-networking and vhost-net
- “The virtio specification is based on two elements: devices and drivers. In a

typical implementation, the hypervisor exposes the virtio devices to the guest
through a number of transport methods. By design they look like physical
devices to the guest within the virtual machine.”

- “When the guest boots and uses the PCI/PCIe auto discovering mechanism,
the virtio devices identify themselves with the PCI vendor ID and their PCI
Device ID. The guest’s kernel uses these identifiers to know which driver must
handle the device. In particular, the linux kernel already includes virtio
drivers.”

- “In the PCI case, the guest sends the available buffer notification by writing to
a specific memory address, and the device (in this case, QEMU) uses a
vCPU interrupt to send the used buffer notification.” (Yizhou: After writing the
data into the queue, the guest driver will notify the host. This is done via a

https://projectacrn.github.io/latest/developer-guides/hld/hld-virtio-devices.html
http://blog.vmsplice.net/2011/09/qemu-internals-vhost-architecture.html
https://ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf
https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.pdf
https://www.redhat.com/en/blog/deep-dive-virtio-networking-and-vhost-net

write to a specific memory address. I think this address will be an MMIO
address, which causes vmexit, and then KVM will pass it to QEMU!)

- Original virto flow:
- Virtio: An I/O virtualization framework for Linux

-

-

-

https://developer.ibm.com/articles/l-virtio/

I think when you start QEMU, you can choose if you want to use `virio` or `vhost` as the
network/block/etc devices. QEMU will use `vhost` accordingly, i.e., use the host’s
`/dev/vhost-xxx` interface.

Source code:
- Linux:

- drivers/virtio/*, drivers/net/virtio-net.c ..
- vhost char devices: drivers/vhost/*.c

- QEMU:
- hw/net/vhost_net.c
- hw/net/virtio-net.c (you can see the difference between virtio and vhost, the

latter’s data path is handed by kernel vhost driver.)

​4.6.​ IOMMU

IOMMU can be used for virtualization or non-virtualization cases. If a device is directly
assigned to a guest, IOMMU must be used, because we need to prevent the guest drivers
from corrupting arbitrary hypervisor memory.

The BIOS presents IOMMU related information via the ACPI DMAR tables. The Linux
IOMMU driver will parse the table and build necessary stuff. The whole linux intel-iommu.c
follows the Intel VT-d specification, i.e., setup Root Table, Context Entry, and talk with
IOMMU via MMIO register access. The IOMMU is involved in every DMA related operation,
because it needs to prepare the page table entries.

IOMMU can also be emulated. QEMU can emulate an IOMMU for the guest, so the guest
linux can also run its intel-iommu code. The emulation is done similar to other MMIO
emulation techniques. (See the following QEMU vIOMMU link for why we need this)

Intel IOMMU is very flexible. Each device can have more than one associated address
space, presumably each client VM can install their address space onto a device. In addition,
the IOMMU can translate from not only gPA, but also gVA (think about RNIC in virtualized
usage!), and some others. This is described int Intel IO-d spec:

- Each device can have number of PASID domains
- Each domain can have multiple modes, first-level, second-level, or nested (in case of

RNIC!)

-
- Thanks to the ISCA’20 paper HyperTRIO: Hyper-Tenant Translation of I/O

Addresses that reminds me of this:

-

​4.6.1.​ dma_map
Drivers will call dma_map and dma_unmap before and after each DMA operation
Remember dma_map? I have implemented in LegoOS, mainly for IB’s needs. At the time of
implementation, I’ve only implemented a pci-nommu version, that means the dma_map is
barely just doing a “kernel virtual address to physical address” translation, that’s all, no
additional setup. The code is here:
https://github.com/WukLab/LegoOS/blob/master/arch/x86/kernel/pci-nommu.c#L50

Linux has the real IOMMU-based dma_map and dma_unmap. Ultimately, it uses the
dma_map_ops, from linux/intel-iommu.c at master · torvalds/linux. I took a brief read of the
code, it’s my understanding that the code is following the Intel VT-d specification. More
specific, this intel-iommu.c source file will:

https://github.com/WukLab/LegoOS/blob/master/arch/x86/kernel/pci-nommu.c#L50
https://github.com/torvalds/linux/blob/master/drivers/iommu/intel-iommu.c

1. Allocate the Root Table and write into the IOMMU registers
2. Allocate context pages
3. Setup the IOMMU page tables during dma_map

For Linux, there are multiple dma_ops: nommu, iommu, and swiotlb. If Intel IOMMU is not
present in the ACPI table, usually the swiotlb is used by default. SWIOTLB is like a bounce
buffer, I don’t really get why it is the default. LegoOS has the nommu version, which really
does nothing.

So when you enable pass-through and expose a device to guest this is what happens:
- Host linux must have IOMMU enabled, thus intel-iommu’s dma_ops is used.
- Guest linux may not have IOMMU present, thus swiotlb dma_ops is used

- If guest linux has an emulated IOMMU from QEMU, then guest is also using
intel-iommu’s dma_ops.

- Of course you can also control more via the intel_iommu command line
- The real physical IOMMU will be in charge of all the devices’ DMA requests.

One thing I still don’t understand: (Answer below, in VFIO section)
- before launching a DMA, when (and how) the guest asks the host to insert the

gPA->hPA mapping into the physical IOMMU pgtable?
- Maybe all pages allocated to guest is inserted into the IOMMU table?
- Which ever dma_ops the guest is using, how would this be possible…

​4.6.2.​ QEMU vIOMMU Emulation
- The official link on vIOMMU emulation: Features/VT-d
- The vIOMMU is trying to emulate the effect of a real IOMMU! It emulates all the

registers, translations, interrupt remapping etc. The mechanism is similar to
emulating other devices: QEMU construct the ACPI DMAR table, so Linux thought
there is a IOMMU present. QEMU will tell KVM to mark the register space of this
vIOMMU as “not present”, thus QEMU can catch all the accesses to vIOMMU via
MMIO faults. Very interesting,.

- The Paper: vIOMMU: Efficient IOMMU Emulation, ATC’11 is doing the same thing,
and proposed alternative solutions and optimizations. Not sure which one is first.

- Code is in: hw/i386/intel_iommu.c.
- vtd_mem_write()
- vtd_iommu_translate()

​4.6.3.​ Nested Translation in IOMMU
IOMMU can also do GVA -> HPA translation using its two-level (nested) translation. The
device needs to work with physical IOMMU. The device can send requests to IOMMU to
request address translation.

To utilize nested translation in IOMMU, there must be a companion vIOMMU from QEMU
exposed to guest VM. And QEMU needs to intercept and record whatever changes the

https://wiki.qemu.org/Features/VT-d

guest is trying to make to vIOMMU, the guest is trying to do gVA->gPA mapping. Then
QEMU will install that onto the physical IOMMU.

[RFC Design Doc v3] Enable Shared Virtual Memory feature in pass-through scenarios
Shared Virtual Memory in KVM

- “Shared Virtual Memory feature in pass-through scenarios is actually SVM
virtualization. It is to let application programs(running in guest)share their
virtual address with assigned device(e.g. graphics processors or accelerators)”

- Okay, I think this SVM feature is useful for devices that DO NOT have any VA->PA
capabilities. By enabling this, these devices can directly use gVA while the underlying
IOMMU will take care of two level translation (gVA->gPA->hPA).

- However, for devices that already have VA->PA capability (e.g., RDMA NIC, GPUs),
this is not useful, or rather, redundant. They can work with a normal IOMMU. So the
device does gVA->gPA, then IOMMU does gPA->hPA.

QUESTION (see paragraph above): It seems RDMA/GPU cards can both use this feature,
right? But I’ve never seen anyone mention this before. My impression is always that
RDMA/GPU cards will do their own GVA to GPA translation and not care whether there is
iommu present.

- I don’t really think Mellanox NIC is using this. From the slide above, it says that the
guest OS must interact with vIOMMU (by QEMU), and then the emulated vIOMMU
will interact with physical IOMMUto set up things.

- We don’t have any IOMMU code in LegoOS but we are still able to run LegoOS
+passthrough RNIC. That means RNIC is doing its own GVA -> GPA and then
physical IOMMU doing GPA -> HPA translation.

Now the question is to find out who is actually using this nested IOMMU translation.

​4.6.4.​ Device-TLB

The Intel vt-d spec talks about Device-TLB. As its name suggests, devices can cache some
entries in their chip! There is a protocol between the device and IOMMU.

- IOMMU exposes Address Translation Service (ATS)
- Device can ask IOMMU to translate sth and send the result back to device, which will

then cache it locally.
- There are also shootdown mechanisms.

Do note, this is totally different from RDMA/GPU’s own VA->PA translation facility.
This one is IOMMU specific and is generic to all devices who want to use it. And it seems it
is used for the nested translation above (gVA->hPA).

- I don’t think RDMA/GPU is using this.

​4.6.5.​ References:
- Virtualizing IO through THE IO Memory Management Unit (IOMMU),

- This is a very detailed slide.

https://lists.linuxfoundation.org/pipermail/iommu/2016-November/019515.html
https://events19.linuxfoundation.cn/wp-content/uploads/2017/11/Shared-Virtual-Memory-in-KVM_Yi-Liu.pdf
http://pages.cs.wisc.edu/~basu/isca_iommu_tutorial/IOMMU_TUTORIAL_ASPLOS_2016.pdf

- Intel Vt-d Specification, 2019
- Linux

- Mastering the DMA and IOMMU APIs
- Intel IOMMU driver analysis
- IOMMU Groups, inside and out
- Utilizing IOMMUs for Virtualization in Linux and Xen

- SWIOTLB, NOMMU, IOMMU dma_ops.. Good stuff!
- PCI Device Passthrough for KVM!

- For a pass-through PCIe device, what’s KVM’s role in it? It seems
KVM is still in charge of the configuration space (Marked as not
present, thus catch EPT faults).

- Nested
- [RFC Design Doc v3] Enable Shared Virtual Memory feature in pass-through

scenarios
- Shared Virtual Memory in KVM

- Papers
- On the DMA Mapping Problem in Direct Device Assignment , SYSTOR’10
- rIOMMU: Efficient IOMMU for I/O Devices that Employ Ring Buffers,

ASPLOS’15
- Explains how the various Linux API interact with the IOMMU. This

paper educated me a lot. MUST READ!
- vIOMMU: Efficient IOMMU Emulation, ATC’11
- Efficient Intra-Operating System Protection Against Harmful DMAs, FAST’15
- Thesis: Rethinking the I/O Memory Management Unit (IOMMU)
- True IOMMU Protection from DMA Attacks: When Copy Is Faster Than Zero

Copy, ASPLOS’16
- DAMN: Overhead-Free IOMMU Protection for Networking, ASPLOS’18
- https://www.usenix.org/legacy/event/usenix08/tech/full_papers/willmann/willm

ann_html/

-

​4.7.​ VFIO
Funny that I missed vfio in the first place, such a critical piece. vfio exposes device’s
configuration spaces to the user space (via mmap of course), so that people could run
user-level device drivers!

https://software.intel.com/sites/default/files/managed/c5/15/vt-directed-io-spec.pdf
https://elinux.org/images/4/49/20140429-dma.pdf
https://terenceli.github.io/%E6%8A%80%E6%9C%AF/2019/08/10/iommu-driver-analysis
http://vfio.blogspot.com/2014/08/iommu-groups-inside-and-out.html
https://pdfs.semanticscholar.org/818f/329f5997ad8787acb3843ddb34949ad907d8.pdf
https://lists.linuxfoundation.org/pipermail/iommu/2016-November/019515.html
https://lists.linuxfoundation.org/pipermail/iommu/2016-November/019515.html
https://events19.linuxfoundation.cn/wp-content/uploads/2017/11/Shared-Virtual-Memory-in-KVM_Yi-Liu.pdf
http://www.mulix.org/pubs/iommu/dmamapping.pdf
http://www.cs.technion.ac.il/~dan/papers/riommu-asplos-2015.pdf
http://www.cs.technion.ac.il/~dan/papers/riommu-asplos-2015.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2015/MSC/MSC-2015-10.pdf
https://www.cs.tau.ac.il/~mad/publications/asplos2016-iommu.pdf
https://www.cs.tau.ac.il/~mad/publications/asplos2016-iommu.pdf
https://www.usenix.org/legacy/event/usenix08/tech/full_papers/willmann/willmann_html/
https://www.usenix.org/legacy/event/usenix08/tech/full_papers/willmann/willmann_html/

To understand that, you first need to understand how the driver talks with the device: PIO,
MMIO, interrupt, and DMA. The most important thing of course is MMIO (assume PCIe
devices): Interrupt/DMA will happen because the driver touched the configuration space in
the first place. Vfio exposes the PCIe configuration space to userspace, so that people can
write a device driver just like they have done in kernel space.

But, a DMA-capable device is able to write to anywhere. That’s why we need IOMMU, that’s
why within the kernel, virtio subsystem is closely bound to the IOMMU part.

The use cases of vfio are straightforward. Both of them need to directly access device:
- Virtualization guest OS
- High performance user-level IO stacks such as DPDK

QEMU uses VFIO to directly assign physical devices to guest OS, and the command line
option is `-device vfio-pci,host:00:05.0`. In fact, virsh PCIe device passthrough configuration
eventually translates to the above QEMU option. (Check /var/log/libvirt/qemu/$vmname)

Note that QEMU itself has valid VA-PA mapping to access the physical device configuration
spaces, which was established via mmap and ioctl. When QEMU launches the guest, it will
expose this part of VA to the guest OS, thus when guest OS tries to access the physical
device’s configuration space, it will just through without any EPT VMEXIT. (The mechanism
should be: qemu will register the PCI device’s memory region via its
memory_region_init_rw() API, which will finally ask KVM to setup the ETP pgtables)

As for the IOMMU mapping, QEMU will use ioctl to ask vfio driver to install the mappings. I
think QEMU will simply map all guest’s memory (gPA -> hPA), so whatever gPA is used by
guest device driver, IOMMU has a valid PTE. Wow, this actually solved my concern!

(the assumption is QEMU allocates the guest memory during start, i.e., just
eager-allocate all memories. Is this true?)

The usage of IOMMU is really smart here. Even though the user app can use ioctl to ask vfio
kernel driver to setup some mappings, the user app is only allowed setup pages belong to
itself! Thus IOMMU is safe, thus DMA is safe, thus the whole “userspace device driver” is
space.

As for other interrupts, it says it was implemented as a file descriptor+eventfd. Sure,
shouldn’t be too hard. :p

References:
- qemu VM device passthrough using VFIO, the code analysis

- I like this dude’s blog, always answers my concern and doubt! This particular
blog is explains how QEMU use vfio, and how QEMU exposes the mapping to
guest OS so that guest can directly access physical device without vmexit.

- Kernel documentation: VFIO

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/chap-guest_virtual_machine_device_configuration
https://terenceli.github.io/%E6%8A%80%E6%9C%AF/2019/08/31/vfio-passthrough
https://www.kernel.org/doc/Documentation/vfio.txt

- This is from the designer, explains details on its implementation, specifially
IOMMU.

- https://events.static.linuxfound.org/sites/events/files/slides/Userspace%20NVMe%20
driver%20in%20QEMU%20-%20Fam%20Zheng_0.pdf

-

​4.8.​ Samecore v.s. Sidecore Emulation
Well, most QEMU/KVM device emulation is samecore, right? For instance, the serial device
is definitely samecore, as you can see from the above QEMU/KVM code flow.

We also know that QEMU has some worker threads. The “main” thread will offload jobs to
them, and the jobs include I/O related stuff, right? So maybe the state-of-the-art QEMU is
already doing both samecore and sidecore emulation?

Well, it depends on how you define “sidecore emulation”, I guess. If it means “avoid vmexit”
at all, then it’s slightly different.

- vIOMMU: Efficient IOMMU Emulation, ATC’11
- Virtualization Polling Engine (VPE): Using Dedicated CPU Cores to Accelerate I/O

Virtualization

​4.9.​ AWS Nitro/Microsoft

The latest in this design space is to use dedicated hardware for IO virtualization, like AWS
Nitro and Microsoft SmartNIC.

The device exposes a unique partition/MMIO to each guest. Guest sees a passthrough raw
device. Within the device itself, there will be stack handling necessary virtualization tasks.
These tasks are similar to what QEMU was doing.

https://events.static.linuxfound.org/sites/events/files/slides/Userspace%20NVMe%20driver%20in%20QEMU%20-%20Fam%20Zheng_0.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Userspace%20NVMe%20driver%20in%20QEMU%20-%20Fam%20Zheng_0.pdf
https://eecs.ceas.uc.edu/~paw/classes/ece975/sp2010/papers/liu-09.pdf
https://eecs.ceas.uc.edu/~paw/classes/ece975/sp2010/papers/liu-09.pdf

​5.​ KVM

Source code:
- KVM handles all vmexit directly, right? Yes.
- KVM source code has an array of handlers invoked upon vmexit. But not all of them

will directly translate to a userspace KVM_EXIT_XXX.
- kvm_vmx_exit_handlers[exit_reason](vcpu)

- So what’s handled by KVM itself?
- Looks like we can create some devices localling inside kernel via KVM APIs.
- KVM_CREATE_PIT for the interrupt chip.

References:
- Architecture of the Kernel-based Virtual Machine (KVM), 2010
- kvm: the Linux Virtual Machine Monitor, 2007
- How VT-x, KVM, QEMU fit together, a good walkthrough!

http://www.linux-kongress.org/2010/slides/KVM-Architecture-LK2010.pdf
https://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
https://binarydebt.wordpress.com/2018/10/14/intel-virtualisation-how-vt-x-kvm-and-qemu-work-together/

-
How to use KVM APIs:

- LWN: Using the KVM API
- KVMTool, should be a better start than QEMU. And this kvm-hello-world.
- QEMU source code: `accel/kvm`
- Rust KVM ioctls

​6.​ libvirt and virsh
- virsh/libvirt’s main task is to convert XML to QEMU command lines. This maintains a

consistent view to deploy VMs. No matter its QEMU or any other new VMMs.
- https://www.redhat.com/en/blog/introduction-virtio-networking-and-vhost-net

https://lwn.net/Articles/658511/
https://github.com/kvmtool/kvmtool
https://github.com/dpw/kvm-hello-world
https://github.com/qemu/qemu/blob/master/accel/kvm/kvm-all.c
https://github.com/rust-vmm/kvm-ioctls
https://www.redhat.com/en/blog/introduction-virtio-networking-and-vhost-net

​7.​ Misc Knowledge

​7.1.​ Timer Interrupt and IPI delivery to VMs
So today (Arp 2, 2020) I came across this VEE’20 Directvisor paper, which is trying to deploy
a very thin hypervisor to bare-metal cloud to regain some manageability. The general
approach is to reduce VM exit (by disabling the vt-d feature) and try to deliver interrupts to
VM directly without VM exit. It talks about the flow of the current timer interrupt and IPI
delivery mechanism, I found it useful thus post it here:

https://dl.acm.org/doi/abs/10.1145/3381052.3381317

